首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerization of o-phenylenediamine (OPD) on l-tyrosine (Tyr) functionalized glassy carbon electrode (GCE) and its electro-catalytic oxidation towards ascorbic acid (AA) had been studied in this report. l-Tyrosine was first covalently grafted on GCE surface via electrochemical oxidation, which was followed by the electrochemical polymerization of OPD on the l-tyrosine functionalized GCE. Then, the poly(o-phenylenediamine)/l-tyrosine composite film modified GCE (POPD-Tyr/GCE) was obtained. X-ray photo-electron spectroscopy (XPS), field emission scanning electron microscope (SEM), and electrochemical techniques have been used to characterize the grafting of l-tyrosine and the polymerization and morphology of OPD film on GCE surface. Due to the doping of the carboxylic functionalities in l-tyrosine molecules, the POPD film showed good redox activity in neutral medium, and thus, the POPD-Tyr/GCE exhibited excellent electrocatalytic response to AA in 0.1 mol l−1 phosphate buffer solution (PBS, pH 6.8). The anode peak potential of AA shifted from 0.58 V at GCE to 0.35 V at POPD-Tyr/GCE with a greatly enhanced current response. A linear calibration graph was obtained over the AA concentration range of 2.5 × 10−4–1.5 × 10–3 mol l−1 with a correlation coefficient of 0.9998. The detection limit (3δ) for AA was 9.2 × 10−5 mol l−1. The modified electrode showed good stability and reproducibility and had been used for the determination of AA content in vitamin C tablet with satisfactory results.  相似文献   

2.
An enzymatic method for determining L-malic acid in wine based on an L-malate sensing layer with nicotinamide adenine dinucleotide (NAD+), L-malate dehydrogenase (L-MDH) and diaphorase (DI), immobilized by sol-gel technology, was constructed and evaluated. The sol-gel glass was prepared with tetramethoxysilane (TMOS), water and HCl. L-MDH catalyzes the reaction between L-malate and NAD+, producing NADH, whose fluorescence (λ exc = 340 nm, λ em = 430 nm) could be directly related to the amount of L-malate. NADH is converted to NAD+ by applying hexacyanoferrate(III) as oxidant in the presence of DI. Some parameters affecting sol-gel encapsulation and the pH of the enzymatic reaction were studied. The sensing layer has a dynamic range of 0.1–1.0 g/L of L-malate and a long-term storage stability of 25 days. It exhibits acceptable reproducibility [s r(%)≈10] and allows six regenerations. The content of L-malic acid was determined for different types of wine, and polyvinylpolypyrrolidone (PVPP) was used as a bleaching agent with red wine. The results obtained for the wine samples using the sensing layer are comparable to those obtained from a reference method based on UV-vis molecular absorption spectrometry, if the matrix effect is corrected for.  相似文献   

3.
Poly(4-vinylpyridine) (PVP)-based anion exchange polymers are not studied as much as cation exchange polymers Nafion and Eastman Kodak AQ for electroanalytical applications. Similarly, octacyanomolybdate [Mo(CN)8 4−] has not been studied much as a redox mediator. This communication presents results from examinations of the behaviour of Mo(CN)8 4−-doped PVP ionomer film electrode to highlight the opportunities for realization of the application of this composite electrode for l-ascorbic acid (AH2) estimation via electrocatalytic mediation in acidic medium. The modified electrodes were characterized by cyclic voltammetry and rotating disc electrode voltammetry. PVP coatings possess strong anion-binding capacity for Mo(CN)8 4− mediator with an extraction coefficient of 990, and electrostatically cross-linked PVP films offer insignificant resistance to permeation of AH2, facilitating a cross-exchange reaction between the substrate and the mediator in the entire film volume. They show effective electrocatalytic oxidation of AH2, with the oxidation potential of AH2 decreased by ∼200 mV in overpotential compared to that at bare electrode. Mo(CN)8 4−/PVP composite electrode does not respond to the more common interferents of l-ascorbic acid estimation even at high positive potentials. These and several other attractive potentialities of the modified electrode are demonstrated by direct determination of AH2 in a commercial vitamin C tablet without any special treatment, with the value closely agreeing (±0.75%) with the reference method.  相似文献   

4.
The conformation of poly(l-lysine) (PLL) was investigated in sodium alkanesulfonate CnSO3Na (n=8, 7) at various temperatures by circular dichroism spectrum measurements. C8SO3Na induced a double-step conformational change from a coil, to a β-sheet, and then to an α-helix, in which C7SO3Na induced a single-step coil-to-helix conformational change. Binding isotherms of C8SO3Na by PLL were constructed from the potentiometry of equilibrium concentration of the surfactant using a surfactant ion-selective electrode. The curves indicated the cooperative binding characteristic and were analyzed by a linear lattice model using the Bethe approximation. The thermodynamic parameters obtained from the model revealed that the binding of C8SO3Na by PLL was an entropy-driven process. The conformational change was observed at nearly full binding, presumably due to the surfactant clustering of the ordered conformation.  相似文献   

5.
Multilayer thin films containing concanavalin A (Con A) and ferrocene-appended glycogen (FcGly) were prepared by a layer-by-layer deposition Con A and FcGly by biological affinity (lectin–sugar interaction) on a glassy-carbon electrode. The electrochemical response of the Con A–FcGly film-coated electrode to sugars was investigated. A cyclic voltammogram (CV), typical of redox species confined to the surface of the electrode, was obtained. The peak current (resulting from the electric charge involved in the redox reaction) in the CV from the electrode decreased on addition of sugars in the solution, because the amount of FcGly on the electrode surface decreased as a result of disintegration of the Con A–FcGly film on addition of sugar. Thus, d-glucose and other sugars at millimole per liter levels can be detected by use of Con A–FcGly films-coated electrodes.  相似文献   

6.
A carbon paste electrode, modified with 2, 2′-[1,7-hepthandiylbis(nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles, was used for the simultaneous determination of dopamine (DA), uric acid (UA), and l-cysteine. The study was carried out by using cyclic voltammetry, chronoamperometry, and square wave voltammetry (SWV) techniques. Some kinetic parameters such as the electron transfer coefficient (α) and heterogeneous rate constant (ks) were also determined for the DA oxidation. A dynamic range of 8.0–1400 μM, with the detection limit of 8.4 × 10−7 M for DA, was obtained using SWV (pH = 7.0). The prepared electrode was successfully applied for the determination of DA, UA, and l-cysteine in real samples.  相似文献   

7.
A kind of erbium hexacyanoferrate (ErHCF)-modified carbon ceramic electrodes (CCEs) fabricated by mechanically attaching ErHCF samples to the surface of CCEs derived from sol–gel technique was proposed. The resulting modified electrodes exhibit well-defined redox responses with the formal potential of +0.215 V [vs saturated calomel electrode (SCE)] at a scan rate of 20 mV s−1 in 0.5 M KCl (pH 7) solution. The voltammetric characteristics of the ErHCF-modified CCEs were investigated by voltammetry. Attractively, the ErHCF-modified CCEs presented good electrocatalytic activity with a marked decrease in the overvoltage about 400 mV for l-cysteine oxidation. The calibration plot for l-cysteine determination was linear at 5.0 × 10−6–1.3 × 10−4 M with a linear regression equation of I(A) = 0.558 + 0.148c (μM) (R 2 = 0.9989, n = 20), and the detection limit was 2 × 10−6 M (S/N = 3). At last, the ErHCF-modified CCEs were used for amperometric detection of l-cysteine in real samples.  相似文献   

8.
The mononuclear complexes (η3-terpy)M(Piv)2·MeCN (M = Fe ii (3) and Co ii (4), and Piv is the pivalate anion) were synthesized by the reactions of polymeric iron(ii) and cobalt(ii) pivalates with 2,2′:6′,2″-terpyridine (terpy). The oxidation of compound 3 affords the pentanuclear heterospin iron(ii,iii) complex (η3-terpy)Fe54-O)(μ3-OH)(μ-OH)2(μ-Piv)71-Piv)2 (5). All compounds were characterized by X-ray diffraction. Dedicated to the 90th anniversary of the L. Ya. Karpov Institute of Physical Chemistry. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1186–1190, June, 2008.  相似文献   

9.
A glass capillary-based enzyme electrode (tip size ≈10 μm) was implanted in the target neuronal region, i.e., dentate gyrus (DG) or cornu ammonis 1 (CA1), of acute brain slices at a depth of ≈10 μm from the slice surface in order to allow the monitoring of chemical stimulant-induced changes in L-glutamate levels. First, the sampling behavior of a glass capillary in a slice was investigated by visualizing the transport of a fluorescence dye. Then, the electrode was applied to real-time monitoring of L-glutamate release in acute hippocampal slices stimulated by surface application of a stimulant solution. The extracellular application of KCl (0.10 M) increased the glutamate levels in the DG and CA1 regions, respectively. The enhancement of L-glutamate concentration at DG was much larger than at CA1. The application of tetraethylammonium chloride (TEA) (25 mM) enhanced the L-glutamate level in the DG region and the enhanced level did not return to the initial value before TEA application even when washed with an artificial cerebrospinal fluid (ACSF). The usefulness of a surface-implanted capillary electrode for monitoring L-glutamate release in acute brain slices is discussed.  相似文献   

10.
Real-time monitoring of L-glutamate release from various neuronal regions of mouse hippocampal slices under ischemia (a glucose-free hypoxia condition) is described. A glass capillary microelectrode with a tip size of ∼10 μm containing a very small volume (∼2 μL) of a solution of glutamate oxidase (GluOx) and ascorbate oxidase was used. First, the amperometric response behavior of the electrode at 0 V versus Ag/AgCl was characterized with a standard glutamate solution in terms of continuous measurements, effect of oxygen, viscosity of solution and concentration dependence. The electrode was applied to the real-time monitoring of L-glutamate released from different neuronal regions of acute hippocampal slices submerged in a hypoxia solution. The time-resolved amounts of L-glutamate released at various neuronal regions (CA1, CA3 and DG) of mouse hippocampal slices were quantified and compared with the reported L-glutamate fluxes using difference-image analysis during ischemia.  相似文献   

11.
Simultaneous determination of arbutin (ART) and l-ascorbic acid (AA) by HPLC with chemiluminescence detection is proposed for the first time. This method is based on the CL reaction of acidic potassium permanganate with ART and AA in the presence of formaldehyde as enhancer. The separation was performed on a C18 column with a 90:10 (v/v) mixture of 0.02 M phosphate buffer and methanol as mobile phase. The effects of several conditions on HPLC resolution and CL emission were studied systematically. The linear ranges were 0.5–50 and 1–200 μg mL−1 for ART and AA, respectively. The detection limits were 0.2 and 0.3 μg mL−1, respectively. The method was successfully applied to the determination of ART and AA in whitening cosmetics.  相似文献   

12.
Summary A high-performance liquid chromatographic method, with 9-anthryldiazomethane as derivatizing agent, has been developed for the simultaneous determination ofN-carbamoyl aspartate andl-dihydroorotate in serum. Sample preparation for 1 mL serum was by simple liquid-liquid extraction and then derivatization. The compounds were separated on a Luna C18(2) column by use of a gradient prepared from acetonitrile and 10 mM sodium acetate buffer, pH 6.0, and fluorimetric detection was performed at excitation and emission wavelengths of 365 nm and 412 nm, respectively. The response was found to be linearly dependent on concentration between 0.8 and 60 μg mL−1 forl-dihydrooratate and between 0.9 and 90 μg mL−1 forN-carbamoyl aspartate; the mean recovery rates were 50 and 51%, respectively. The limits of detection and quantification were 0.33 μg mL−1 and 0.6 μg mL−1, respectively, forl-dihydroorotate and 0.4 μg mL−1 and 0.7 μg mL−1 forN-carbamoyl aspartate. This method can be used to assess accumulation ofN-carbamoyl aspartate andl-dihydroorotate in body fluids in situations where cellular pyrimidine de novo synthesis is impaired.  相似文献   

13.
Numerous microcapsule systems have been developed for a wide range of applications, including the sustained release of drugs, cell transplantation for therapy, cell immobilization, and other biotechnological applications. Despite the fact that microcapsule membrane is a dominant factor governing overall microcapsule performance, its characterization is challenging. We report a new method for characterizing microcapsule membranes, using the most common alginate-poly-l-lysine-alginate (APA) microcapsule as an example. Our data demonstrate that genipin, a naturally derived reagent extracted from gardenia fruits, interacts with poly-l-lysine (PLL) and generates fluorescence. This fluorescence allows clear visualization and easy analysis of the PLL membrane in the APA microcapsules using confocal laser scanning microscopy. The results also show that PLL binding correlates to the reaction variables during PLL coating such as PLL concentration and coating time. In addition, five other different microcapsule formulations consisting of PLL and/or chitosan membranes were examined, and the results imply that this method can be extended to characterize a variety of microcapsule membranes. These findings suggest that genipin can serve as a fluorogenic marker for rapid characterization of microcapsule membranes, a superior method that would have important implications for microcapsule research and potential in many other applications.  相似文献   

14.
A detailed investigation of sulphided Co/Mo/Al2O3 catalysts, their oxide precursors and several model oxides and sulphides of cobalt and molybdenum has been carried out using x-ray photoelectron spectroscopy and x-ray absorption spectroscopy (xanes andexafs). Octahedrally coordinated Co(II) and Mo(IV) are shown to be present in a sulphidic environment on the surfaces of these catalysts. The surface species contain an excess of sulphur, probably involving disulphide linkages. The surface compositions of the catalysts examined conform to the general formula Co11 Mo 2n IV (2n + 3)S 2 2− (2n -2)S2−.  相似文献   

15.
A novel enzymatic organic synthesis was reported, utilizing glucose-3-dehydrogenase (G3DH) and its regeneration via electrochemical methods. We combined the water-soluble G3DH prepared from a marine bacterium, Halomonas sp. α-15, and electron mediator with the electrode system in order to regenerate the enzyme. Using this system, the conversion of 1,5-anhydro-d-glucitol (1,5AG), a diabetes marker in human blood, was investigated. The final yield of the product, 3-keto anhydroglucitol (3-ketoAG), which was identified by 13C nuclear magnetic resonance, was 82% based on the initial amount of 1,5AG. The electrochemical yield of the reaction proceeded almost stoichiometrically. The electrochemical conversion rate of 1,5AG was 1.24 mmol/(L·h), and the electrochemical yield of 1,5AG consumption was 80%, whereas that for 3-ketoAG was 60%.  相似文献   

16.
The quick separation and simultaneous determination of d-amphetamine and diphenhydramine in the quick-acting anti-motion capsules was investigated by capillary zone electrophoresis. The influence of different parameters (internal standard, injection modes, pH, concentration of the running buffer and applied voltage) was systematically studied. The two compounds could be well separated within 2.0 min in a 40.2 cm fused-silica capillary at a separation voltage of 20 kV in a 50 mM phosphate–12.5 mM borate buffer adjusted to pH 5.5. Correlation coefficients for calibration curves in the range 0.50–1.50 μg mL−1 for d-amphetamine and 2.75–8.25 μg mL−1 for diphenhydramine were higher than 0.999. The limits of detection of d-amphetamine and diphenhydramine were 10.0 and 5.5 ng mL−1 and the recoveries of the compounds in the QAAMC were 99.80 and 99.85%, respectively. The authors L. Zhang and Y. Chen equally contributed to this work.  相似文献   

17.
A class of novel amphiphilic diblock copolymer of MePEG-b-poly(DL-lactide-co-RS-β-malic acid) has been synthesized via the hydrogenation over palladium on charcoal of MePEG-b-poly(DL-lactide-co-RS-β-benzyl malolactonate), which was prepared by ring-opening copolymerization of DL-lactide and RS-β-benzyl malolactonate (MABz) using methyl-polyethylene glycol (MePEG) as the initiator and stannous octoate as the catalyst. The influence of copolymerization temperature, reaction time, macro-initiator (MePEG-5000) proportion and monomer ratio was studied. Gel permeation chromatography measurements revealed that the molecular weight decreased with increasing MABz feeding dose. The configurational structures of the protected and de-protected copolymers were determined by 13C nuclear magnetic resonance (NMR), 1H NMR and Fourier transform infrared. A water-swollen core of the nanospheres formed from the de-protected copolymer was discovered by transmission electron microscopy measurement. Additionally, the degradation experiments indicated that more hydrophilic malic acid content led to higher degradation rate.  相似文献   

18.
Aqueous colloidal manganese dioxide (MnO2) was prepared via titration by using potassium permanganate and sodium thiosulphate in aqueous neutral medium. The kinetics of oxidation of d-glucose onto the surface of colloidal MnO2 have been studied spectrophotometrically. The results show that the rate of initial stage (nonautocatalytic path) increases with increasing the [d-glucose], [H+], and temperature and also upon addition of nonionic surfactant Triton X-100 (TX-100), which indicates that the surfactant enhances the concentration of d-glucose at the surface of the colloidal MnO2. Hydrogen bonding interaction seemingly arises between –OH groups of d-glucose and oxygen of the ether linkages of polyoxyethylene chain of TX-100. A possible mechanism of the oxidative degradation of d-glucose is discussed in terms of d-glucose/TX-100 and colloidal MnO2 interaction.  相似文献   

19.
The use of a combination of ionic liquid [bmim]PF6 with boron trifluoride etherate as the catalyst in the glycosylation of α-tocopherol and chromanol of vitamin K1 (naphthotocopherol) allowed us to obtain β-glycosides in high yield when β-anomer of peracetylated D-glucose was used. In addition, usually inactive α-anomers of peracetylated D-glucopyranose and D-galactopyranose were involved in this reaction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2401–2404, December, 2007.  相似文献   

20.
Using a column-switching HPLC system combining a micro-ODS column and a chiral column, the amounts of d-proline (d-Pro) have been determined in 18 tissues, plasma and urine of mice. To avoid the enzymatic degradation of d-amino acids in vivo, a mutant mouse strain lacking d-amino acid oxidase activity (ddY/DAO mouse) was used. In the brain, relatively large amounts of d-Pro were observed in the anterior pituitary, posterior pituitary and pineal glands. In the peripheral tissues, the amounts of d-Pro were high in the pancreas and kidney. Above all, it is surprising that the ddY/DAO mice excreted large amounts of d-Pro in their urine (433 nmol/mL, 20 times that of l-Pro). The origin of d-Pro has also been investigated. By comparing germ-free mice and gnotobiotic mice, intestinal bacteria were shown to have no effect on the urinary d-Pro amount. Concerning the dietary origin, a notable amount of d-Pro was still excreted in the urine after starvation for 4 days, suggesting that some of the d-Pro is produced in the mice. Age-dependent changes in the urinary d-Pro amount have also been investigated from the postnatal 1st month up to 12 months, and ddY/DAO mice were found to excrete large amounts of d-Pro in the urine constantly throughout their lives. Kenji Hamase is Associate Professor in the Department of Bioanalytical Chemistry, Graduate School of Pharmaceutical Sciences at Kyushu University. His current research interests focus on the development of analytical methods for d-amino acids and the study of their physiological functions and diagnostic values. He received the Japanese Society for Analytical Chemistry Award for Young Scientists in 2003, and the PSJ Award for Young Scientists in 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号