首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
The indirect squeeze casting process has been used to cast a 7050 (Al-6.2Zn-2.3Cu-2.3Mg) wrought Al alloy to near-net shape with excellent die replication. Defects which occur with gravity casting, in particular (1) shrinkage pipe, (2) macro-porosity and (3) hot-tearing, are largely removed by squeeze casting, although regions of macro-porosity can re-appear when thick sections are fed through substantially thinner sections. Squeeze casting results in a considerable refinement of microstructure compared to gravity casting due to a marked decrease in solidification time. The decrease in solidification time is caused by intimate contact between the pressurised melt and the die, which leads to an increase in the heat transfer coefficient. Decreasing the section thickness also results in a refinement of the microstructure due to a reduction in solidification time. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

2.
目的 研究挤压铸造与超声处理工艺对铸造铝锂合金组织与性能的影响规律,分析工艺改变对组织细化及性能提升的作用机理,解决传统重力铸造下铝锂合金性能较差的问题。方法 将挤压铸造(SC)与超声处理(UT)相结合制备Al-2Li-2Cu-0.5Mg-0.2Zr合金,在熔体超声2 min后,以50 MPa的挤压力制备合金,探究各工艺对铸造铝锂合金显微组织与力学性能的影响。结果 与传统的重力铸造(GC)相比,SC合金的孔隙率和成分偏析显著降低,晶粒尺寸也明显减小,特别是经过UT+SC处理的合金得到了进一步优化。经UT+SC处理后,Al-2Li-2Cu合金的极限抗拉强度(UTS)、屈服强度(YS)和伸长率分别为235 MPa、135 MPa和15%,与GC合金相比,分别提高了113.6%、28.6%、1 150%,与SC合金相比,分别提高了5.4%、3.8%、15.4%。结论 UT+SC工艺能明显提升铸造铝锂合金的性能。UT+SC制备的Al-Li合金的强度和伸长率的提高归因于孔隙率的降低、晶粒细化和第二相的均匀分布。将挤压铸造与超声处理相结合制备铸造铝锂合金解决了重力铸造下合金性能较差的问题,为满足航...  相似文献   

3.
Squeeze casting of magnesium alloys and their composites   总被引:8,自引:0,他引:8  
Squeeze casting, also known as liquid metal forging, extrusion casting and pressure crystallization, is a process in which molten metal soldifies in a die under an applied high pressure. The concept of squeeze casting was invented in Russia over 100 years ago. Later the process was exploited in North America, Japan and Europe to produce various automotive components. With the rapid expansion of magnesium applications in the automotive industry, the development of squeeze casting technology for magnesium alloys and their composites has been motivated by incentives to produce high-quality components. The present paper reviews recent progress in squeeze casting, and the effects of process variables on the cast structure and properties of magnesium alloys and magnesium-based composites. Approaches to optimization of the squeeze-casting process are discussed. The significant advantages of squeeze-cast magnesium alloys and magnesium-based composites are highlighted. The on-going research work at ITM is presented.  相似文献   

4.
《Materials Letters》2005,59(8-9):894-900
A research program was conducted to study the effects of squeeze pressure (70, 100 and 160 MPa) and heat treatment T6 on the structure, hardness and tensile properties of cast Al6Si0.3Mg alloys. The influence of squeeze pressure on macro- and microstructures of Al6Si0.3Mg alloys has been investigated. Some of castings were solution treated at 540 °C for various times and others were subjected to aging at 170 °C after solution treatment. The results indicated that precipitation occurred within about 30 min for both cast and squeeze cast alloys. The hardness began to increase and maximum values were observed after about 10 h for as-cast alloy. Increasing of squeeze pressure (70–160 MPa) accelerated strength of the alloys from 8 to 4 h, respectively. Squeeze pressures decreased the percentage of porosity and increased the density, also it decreased the grain size of α-Al and modified the Si eutectic. Hardness and tensile properties increased with both heat treatment and increasing of squeeze pressure.  相似文献   

5.
The Al–5.0 wt% Cu–0.6 wt% Mn alloys with different Fe contents were prepared by gravity die casting and squeeze casting. The difference in microstructures and mechanical properties of the T5 heat-treated alloys was examined by tensile test, optical microscopy, deep etching technique, scanning electron microscope and electron probe micro-analyzer. The results show that both β-Fe and α (CuFe) are observed in T5 heat-treated gravity die cast alloy and only α (CuFe) appears in the squeeze cast alloy when the Fe content is 0.5 wt%. When the Fe content is more than 1.0 wt%, the main Fe-rich intermetallics is α (CuFe) in both squeeze cast and gravity die cast alloys. The mechanical properties of both the gravity die cast and squeeze cast alloys decrease gradually with the increase of Fe content due to the decreased volume fraction of precipitation particles, the increased volume fraction of Fe-rich intermetallics and the increased size of α (Al) dendrites. The squeeze cast alloys with different Fe contents have superior mechanical properties compared to the gravity die cast alloys, which is mainly attributed to the reduction of porosity and refinement of Fe-rich intermetallics and α (Al) dendrite. In particularly, the elongation of the squeeze cast alloys is less sensitive to the Fe content than that of the gravity die cast alloys. An elongation level of 13.7% is obtained in squeeze cast alloy even when the Fe content is as high as 1.5%, while that of the gravity die cast alloy is only 5.3%.  相似文献   

6.
A 7050 (Al–6.2 wt% Zn–2.3 wt% Cu–2.3 wt% Mg) Al alloy, conventionally used for wrought products, has been successfully cast to near-net shape using direct squeeze casting. Squeeze casting with an applied pressure of 50 MPa removes the defects observed in gravity die cast billets, in particular, (1) shrinkage pipe, (2) poor die replication and waisting, and (3) microporosity. Squeeze casting results in considerable refinement of the microstructure due to an increase in cooling rate from 0.5°C s–1 for gravity casting to 11°C s–1 for squeeze casting in a tool steel die lined with porous insulation, and from 2.5 to 10°C s–1, respectively, in an uninsulated die. A normal segregation pattern of increasing eutectic toward the center of the billet is found for squeeze casting, compared to an inverse segregation pattern of increasing eutectic toward the edge of the billet for gravity casting. This change in segregation pattern is due to a higher radial temperature gradient and reduced time in the semisolid state for squeeze casting.  相似文献   

7.
Abstract

An in situ 5 vol.-% TiB2/2014 composite was prepared by an exothermic reaction of K2TiF6, KBF4 and Al melts. The effect of introduction of in situ formed TiB2 particles on the squeeze-casting formability of the composite was discussed. The microstructural evolution and changes in the mechanical properties of the composite at different squeeze pressures were investigated. The results showed that a pouring temperature of 710°C, a die temperature of 200°C and a squeeze pressure of 90 MPa were found to be sufficient to get the qualified squeeze cast and maximum mechanical properties for an Al 2014 alloy. However, the pouring temperature, die temperature and squeeze pressure need to be increased to 780°C, 250°C and 120 MPa for the composite to get the qualified squeeze cast and maximum mechanical properties as a result of the effect of introduction of in situ formed TiB2 particles on the solidification process, plasticity and fluidity of the composite. The microstructural refinement, elimination of casting defects such as shrinkage porosities and gas porosities and improved distribution of TiB2 particles in the case of the composite result when pressure was applied during solidification. Compared with the gravity-cast composite, the tensile strength, yield strength and elongation of the squeeze-cast composite at 120 MPa increased by 21%, 16% and 200%.  相似文献   

8.
Aluminium 2124 alloy and its composite with 10% SiC particles of average particle size of 23 μm were squeeze cast at different pressures. The effect of squeeze pressure during solidification was evaluated with respect to microstructural characteristics using optical microscopy and image analysis and mechanical properties by tensile testing. The microstructural refinement, elimination of casting defects such as shrinkage and gas porosities and improved distribution of SiC particles in the case of the composite were resulted when pressure is applied during solidification. A pressure level of 100 MPa was found to be sufficient to get the microstructural refinement and very low porosity level in both the alloy and the composite. The improved mechanical properties observed in the squeeze cast alloy and the composite could be attributed to the refinement of microstructure within the material.  相似文献   

9.
Swage casting is a new casting technique which combines the advantages of squeeze, centrifugal and semi-solid casting methods. In this new casting method, components with one rotating axis can be produced on a swage casting machine from molten metal in a one-step operation. A shape like a “bomb-body” is chosen to demonstrate the advantages of this new method by using A380 Al–Si–Cu alloy. The same alloy is also cast with centrifugal and squeeze casting methods. In this study, the swage casting method and its features are briefly described. The final microstructures, mechanical properties and amount of porosity of the cast pieces produced by squeeze, centrifugal and swage casting methods are compared. Swage cast pieces showed a different composition of microstructure that consists of fine dendritic particles at the chill ends and a mixture of spherical and rosette shaped particles at the core. The swage cast pieces also have a slightly higher mechanical strength as indicated by tensile strength and Brinell hardness values.  相似文献   

10.
Zinc-aluminum cast alloys (ZA alloys) have good castability, mechanical properties and excellent tribological characteristics. Of all the ZA alloys, ZA-27 (containing 27% aluminum) has the highest strength and optimum wear resistance. However all the ZA alloys, including ZA-27, suffer from lack of creep resistance and high temperature stability. One probable solution to improve these properties is to reinforce the alloys with ceramic particles or fibers to result in metal matrix composites (MMCs). MMCs can be economically produced through squeeze casting which involves infiltration. This paper presents the salient features of an experimental study on ZA-27 alloy based MMCs produced through Squeeze Casting.  相似文献   

11.
A356 aluminum alloy reinforced with 7 wt.% microsilica composites was produced by the three different processing routes viz. liquid metal stir casting followed by gravity casting, compocasting followed by squeeze casting and modified compocasting route and their properties were examined. Microstructure of liquid metal stir cast Al MMC shows agglomeration of particles leading to high porosity level in the developed material. Adopting new route of compocasting followed by squeeze casting process prevents the agglomeration sites with uniform distribution and dispersion of the dispersoids in the matrix metal. Modified compocasting process reduces the segregation of particles in the final composites thus enhancing the mechanical, tribological and corrosion properties of the composites. Superior wear-resistance properties were exhibited by the modified compocast composite compared to the unreinforced squeeze cast alloy and abrasive type wear mechanism was observed in the case of composite. Increasing the sliding speed resulted in the quick evolution of tribolayer and the wear rate of composite gets reduced. The presence of intermetallic phases like MgAl2O4, NaAlSi3O8 and KAlSi3O8 has a favorable effect on increased corrosion resistance of the composite. Microsilica particles significantly enhanced the compressive strength of modified compocast composites compared to the unreinforced squeeze cast Al alloy.  相似文献   

12.
This paper investigates the influence of variations in the microstructure of high pressure die cast AZ91 on the elevated temperature mechanical properties of the alloy. Thinner-walled high pressure die castings show an improvement in elevated temperature strength, ductility and creep resistance. Further improvements to the creep resistance were achieved by ageing the alloy prior to creep testing. It appears that an increased proportion of fine grained ‘skin’ region in the thinner castings contributed to the improved properties. Also, it appeared that the presence of supersaturated solute Al in the eutectic α-Mg contributes to the poor creep properties, probably due to the microstructural instability. Final failure is associated with the growth of voids either from porosity in the alloy or nucleated from discontinuous precipitates.  相似文献   

13.
In this paper, a new magnesium alloy Mg–12Zn–4Al–0.5Ca (ZAX12405) was prepared by squeeze casting. The effects of processing parameters including applied pressure, pouring temperature and dwell time on the microstructure and mechanical properties of squeeze-cast ZAX12405 alloy were investigated. It was found that squeeze-cast ZAX12405 alloy exhibited finer microstructure and much better mechanical properties than gravity casting alloy. Increasing the applied pressure led to significant cast densification and a certain extent of grain refinement in the microstructure, along with obvious promotion in mechanical properties. Lowering the pouring temperature refined the microstructure of ZAX12405 alloy, but deteriorated the cast densification, resulting in that the mechanical properties firstly increased and then decreased. Increasing the dwell time promoted cast densification and mechanical properties just before the solidification process ended. A combination of highest applied pressure (120 MPa), medium pouring temperature (650 °C) and dwell time (30 s) brought the highest mechanical properties, under which the ultimate tensile strength (UTS), yield strength (YS) and elongation to failure (Ef) of the alloy reached 211 MPa, 113 MPa and 5.2% at room temperature. Comparing with the gravity casting ZAX12405 alloy, the UTS and Ef increased 40% and 300%, respectively. For squeeze-cast Mg–12Zn–4Al–0.5Ca alloy, cast densification was considered more important than microstructure refinement for the promotion of mechanical properties.  相似文献   

14.
The fatigue results of a high‐pressure die cast of AZ91D magnesium alloy revealed the presence of different types of casting defects, which account for the large scattering in the number of cycles until failure. In this paper, this magnesium alloy has been analysed, and in an effort to reproduce the same surface and material conditions exhibited in automotive service components, the fatigue test samples were manufactured using a die that employs the same casting process and equipment. To examine the fracture surface of all the fatigue tests, a scanning electron microscope was used, and the source of the failure, so as to relate fatigue life with casting defect type, was identified. Five casting defect types that influence the fatigue behaviour were observed and classified: (a) isolated pores (blowholes), (b) micro‐porosity areas, (c) circular shrinkage cavities associated with the contraction and geometry of the casted specimen, (d) surface burrs associated with the die‐casting mould and (e) the presence of oxides or inclusions.  相似文献   

15.
In the present work, Mg-Zn-Cu alloy (ZC63) and its saffil alumina short fibre reinforced composites produced using the squeeze casting technique were evaluated for their properties. The unreinforced base alloys and their composites were characterized for their microstructure, hardness, yield strength, impact strength, wear resistance and corrosion resistance. The dependence of the properties of composites was studied as a function of fibre volume fraction. Results showed that the composites exhibited improved hardness, yield strength at elevated temperature and wear resistance in comparison to the monolithic alloy. However, ductility, impact strength and corrosion resistance of the composites were inferior to that of the base alloy. The nature of the base alloy matrix in determining the properties of the composites was discussed based on fractographic analysis.  相似文献   

16.
Mechanical property-grain size relationships have been examined for squeeze cast Al-4.5% Cu alloy, for an aluminium alloy with a composition corresponding to wrought 7010, and for a magnesium alloy AZ91. The general trend of the results obtained showed that the tensile properties and the fatigue strength improved as grain size decreased and the reverse was found to be the case for the fatigue crack propagation resistance and fracture energy of these castings. However, the results also showed that no simple common relationship existed between grain size and the tensile properties of the different alloys. The results are discussed in respect of their microstructures.  相似文献   

17.
Microstructure and mechanical properties of hyper-eutectic Al-Si alloy fabricated by spray casting were in- vestigated and then these results were compared with those by squeeze cast.The spray-cast specimen was found to have finer Si particles (~5μm) compared to the squeeze-cast specimen (10-25μm).The tensile strength and elongation of the spray-cast specimen are also higher than those of the squeeze cast one.It was considered that the increased mechanical properties of the spray-cast specimen were mainly due to finer size of the Si particles distributed in Al matrix.  相似文献   

18.
Cyclic deformation behavior and fatigue life of squeeze-cast AZ31 magnesium alloy was studied under stress amplitude-control at room temperature. Low and high cycle fatigue tests with engineering stress amplitudes in the range from 40 to 110 MPa were conducted. Analysis of hysteresis curves was performed. Tension–compression asymmetry of hysteresis loops was not observed; the alloy exhibited cyclic hardening in tension and compression. The fatigue life in the low cycle fatigue region was expressed by Wöhler and derived Manson–Coffin curves. Experimental data in both, the low and high cycle fatigue regions were fitted by means of regression functions. S–N curves exhibited a smooth transition from the low to the high cycle fatigue regions and significant scattering of experimental points was observed. Furthermore, metallographic and fractographic analyses were performed. Crack initiation occurred from the specimen surface or on clusters of secondary particles; the region of final fracture was characterized by a transgranular ductile fracture.It can be concluded that the fatigue properties of squeeze cast magnesium alloy AZ31 are significantly improved comparing to materials prepared by common methods of casting. Squeeze casting also enables the cost-effective fabrication of complicatedly shaped parts.  相似文献   

19.
挤压铸造技术是一种结合了铸造和塑性加工特点的短流程、高效、精确成形技术,广泛应用于机械、汽车、家电、航空、航天、国防等领域生产高性能和高精度的零件。首先简要介绍了金属材料挤压铸造成形技术的特点和历史。重点分析了液态金属压力下结晶的物理冶金行为和力学过程,此外,还总结了挤压铸造技术涉及的材料体系、挤压铸造过程的工艺参数优化、挤压铸造过程的零件成形、挤压铸造过程的数值模拟、挤压铸造成形装备研究方面的研究进展。最后展望了金属材料挤压铸造成形技术的发展重点。  相似文献   

20.
Abstract

In the present investigation, the microstructures and mechanical properties of Fe–Cr alloy prepared by single roll strip casting were studied. Optical microstructure showed subgrain boundaries inside large grains. Cracks were observed along the grain boundary. Scanning electron microscopy, X-ray diffraction study confirms the formation of chromium carbide at the grain boundary in the case of as cast alloy. Electron backscatter diffraction showed preferred orientation of grains in the as cast alloy. Carbides and undesired phases were not observed in heat treated alloy. Pores present in as cast samples expand after heat treatment process. Mechanical properties, like tensile strength, yield strength, elongation and hardness, of Fe–Cr single roll strip casting alloys were improved after heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号