首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-step melt blending process was utilized to produce linear low-density polyethylene (LLDPE)/reclaimed rubber (RR)/carbon nanotube (CNT) nanocomposites in the presence of maleic anhydride grafted polyethylene as a compatibilizer. The effect of LLDPE/RR ratio and CNT content on the morphological, thermal, mechanical, and rheological behavior of these dynamically vulcanized LLDPE/RR nanocomposites were investigated. The morphological study showed that the RR was dispersed in the LLDPE matrix, and CNT addition led to an improved morphology as smaller RR sizes inside LLDPE were observed. The mechanical results revealed that increasing the RR content decreased the hardness, modulus of elasticity, and elongation at break while CNT improved the tensile properties and other mechanical properties. The differential scanning calorimeter analysis showed that the CNT improved the LLDPE crystallization by acting as nucleation agents. Dynamic mechanical analysis showed higher storage modulus and lower loss factor as compared to the neat blend due to mobility restrictions of the polymer chains induced by the presence of CNT. For the conditions studied, the electrical percolation threshold was found to occur at a very low CNT concentration (about 1 wt %) compared to the literature because of the specific structure produced leading to CNT residing in the LLDPE matrix and at the interface between both polymeric phases. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47795.  相似文献   

2.
The objective of this study is to investigate the effects of carbon nanotube (CNT) content, surface modification, and silane cross‐linking on mechanical and electrical properties of linear low‐density polyethylene/multiwall CNT nanocomposites. CNTs were functionalized by vinyltriethoxysilane to incorporate the ─O─C2H5 functional groups and were melt‐blended with polyethylene. Silane‐grafted polyethylene was then moisture cross‐linked. Silanization of CNT was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and EDX analysis. Hot‐set test results showed that silane cross‐linking of polyethylene and incorporation of modified CNTs into polyethylene led to an increase in cross‐linking density and the number of entanglements resulting in a decrease in elongation. It was found that the addition of pristine multiwall carbon nanotubes (MWCNTs) and functionalized MWCNTs does not affect silane cross‐linking density. Silane modification resulted in a stronger adhesion of the silane cross‐linked LLDPE to silanized MWCNTs according to scanning electron microscopy micrographs. Additionally, the electrical tests revealed that the silane modification of CNTs results in an improvement in electrical properties of nanocomposites, while silane cross‐linking will not have an effect on electrical properties. Rheological properties of MWCNT/LLDPE nanocomposites have been studied thoroughly and have been discussed in this study. Moreover, according to TGA test results, modification of the MWCNTs led to a better dispersion of them in the LLDPE matrix and consequently resulted in an improvement in thermal properties of the nanocomposites. Crystallinity and melting properties of the nanocomposites have been evaluated in detail using DSC analysis. J. VINYL ADDIT. TECHNOL., 26:113–126, 2020. © 2019 Society of Plastics Engineers  相似文献   

3.
Cu/OMMT (organo-montmorillonite)/LLDPE (linear low-density polyethylene) nanocomposites were prepared via melt mixing combined with melt extruding process. X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectra, scanning electron microscope (SEM), and transmission electron microscopy (TEM) were employed to characterize the resultant nanocomposites. The results showed that the OMMT layers were exfoliated and the nano-Cu particles were distributed uniformly in the polymer matrix. And the introduction of nanofiller into LLDPE matrix had little effect on the crystallinity of the polymer. The salt spray tests showed that OMMT and nano-Cu could improve the anticorrosion properties of LLDPE matrix, respectively. And the coexistence of OMMT and nano-Cu in Cu/OMMT/LLDPE nanocomposites could produce a synergistic effect on enhancing the anticorrosion properties. Furthermore, the co-incorporation of OMMT and nano-Cu into the polymer matrix also increased the thermal-oxidative stability and mechanical properties of LLDPE matrix significantly, as compared with the Cu/LLDPE and OMMT/LLDPE nanocomposites due to the synergistic effect. The bactericidal properties evaluation showed that the bactericidal ability of Cu/OMMT/LLDPE increases with nano-Cu content effectively.  相似文献   

4.
The objectives of this study are to investigate the effect of silica nanoparticles on the morphology and rheological behavior of immiscible linear low‐density polyethylene/poly(lactic acid) (LLDPE/PLA) blends. Melt blending method is applied to prepare the blends and their nanocomposites. Scanning electron microscope and parallel plate rheometer were used to investigate morphology and rheological behavior of the blend nanocomposites. Scanning electron microscope results demonstrated a significant change in morphology behavior by incorporation of silica nanoparticles. A significant reduction in the PLA droplet for LLDPE/PLA (75/25) with 8 wt % silica was observed. The rheological studies illustrated that for all samples storage modulus and complex viscosity of blend nanocomposites are higher than neat blends. Finally, melt rigidity of blend nanocomposites was estimated by measurement of rheological properties using a rotational rheometer through small amplitude oscillatory shear experiments. As a result, through the shear data, a high value quantity as a criteria for melt rigidity is obtained for the LLDPE/PLA (75/25) with 8 wt % silica in comparing to the other samples. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45526.  相似文献   

5.
Longzhen Qiu 《Polymer》2006,47(3):922-930
The morphology and thermal stabilization mechanism of polymeric nanocomposites prepared by solution intercalation of linear low density polyethylene (LLDPE) with montmorillonite (MMT), MgAl layered double hydroxide (LDH), and ZnAl LDH have been studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). Both LLDPE/MMT and LLDPE/MgAl LDH nanocomposites exhibit mixed intercalated-exfoliated structures, whereas the LLDPE/ZnAl LDH nanocomposites exhibit completely exfoliated structures because the ZnAl LDH layers can be easily broken during the refluxing process. All nanocomposites show significantly enhanced thermal stability compared with virgin LLDPE due to the increases of the effective activation energy (Eα) during degradation process. However, LDHs nanocomposites show much higher thermal degradation temperatures than MMT nanocomposites with the same filler content because they have much higher Eα than MMT nanocomposites at the early degradation stage. The data of real time FTIR spectroscopy and morphological evolution reveal a catalytic dehydrogenation effect presents in MMT nanocomposites, which may decrease the Eα of degradation and thermal stability of MMT nanocomposites.  相似文献   

6.
Poly(vinylidene fluoride) (PVDF) nanocomposites with different loading of carbon nanotubes (CNT) and carbon black (CB) were prepared by melt blending method. The conductivity and mechanical properties of the nanocomposites were investigated. The results showed that percolation threshold of CNT/CB/PVDF nanocomposites appeared at a lower concentration (1.25 vol% CNT) than that of CNT/PVDF (>2.08 vol% CNT). The tensile strength of CNT/CB/PVDF nanocomposites was also improved, with 32.1% increase compared to PVDF and 18.0% increase compared to CNT/PVDF at loading of 1.25 vol% CNT/0.96 vol% CB. To explore the synergistic effect of CNT and CB, nonisothermal crystallization and isothermal crystallization behaviors of PVDF and its nanocomposites were studied by differential scanning calorimetry, and the crystallization morphology of them was observed under the three dimensional digital microscope with the polarized model. The crystallization rate of PVDF was speeded up markedly because of heterogeneous nucleation effect of nanoparticles, and CNT and CB nanoparticles had a synergistic effect on nucleation. Polarized microscope observation confirmed that spherulite size of PVDF became smaller owing to the accelerating of crystallization, which influenced the distribution of nanoparticles. The dispersion of nanofillers in matrix was observed by scanning electron microscope. It was revealed that CB could make CNT disperse more evenly in the PVDF matrix. The synergies network of CNT and CB is suggested to build in matrix, which improved conductivity and mechanical properties of PVDF nanocomposites. POLYM. COMPOS., 36:2248–2254, 2015. © 2014 Society of Plastics Engineers  相似文献   

7.
In rotational molding process, polymer powders undergo a cycle of heating, melting, cooling, and subsequent solidification in the mold. Resins, like linear low‐density polyethylene (LLDPE), are used in this process on a large scale mainly because of its good mechanical properties and excellent thermal stability. Yet, incorporation of additives is necessary to further improve the visco‐elastic, thermal as well as melt flow properties of the resin. This study investigates the effects of nanocomposites of fumed silica (FS) with rotationally moldable LLDPE. Thermal transitions in the LLDPE‐FS nanocomposites were investigated and correlated with their melt flow characteristics. The effect on melt processing during rotational molding and compounding, were analyzed by melt flow index and torque rheometry studies. A suitable blend of FS in LLDPE has been recommended for rotational molding based on rheological studies and dynamic mechanical analysis. POLYM. COMPOS., 37:2995–3002, 2016. © 2015 Society of Plastics Engineers  相似文献   

8.
To improve the thermal properties of linear low‐density polyethylene (LLDPE), the CaCO3/LLDPE nanocomposites were prepared from nanometer calcium carbonate (nano‐CaCO3) and LLDPE by melt‐blending method. A series of testing methods such as thermogravimetry analysis (TGA), differential thermogravimetry analysis, Kim‐Park method, and Flynn‐Wall‐Ozawa method were used to characterize the thermal property of CaCO3/LLDPE nanocomposites. The results showed that the CaCO3/LLDPE nanocomposites have only one‐stage thermal degradation process. The initial thermal degradation temperature T0 increasing with nano‐CaDO3 content, and stability of LLDPE change better. The thermal degradation activation energy (Ea) is different for different nano‐CaCO3 content. When the mass fraction of nano‐CaCO3 in nanocomposites is up to 10 wt %, the nanocomposite has the highest thermal degradation Ea, which is higher (28 kJ/mol) than pure LLDPE. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Thermoplastic nanocomposites, based on high‐density polyethylene, polyamide 6, polyamide 66, poly(butylene terephthalate), or polycarbonate and containing multiwalled carbon nanotubes (CNTs), were compounded with either neat CNTs or commercial CNT master batches and injection‐molded for the evaluation of their electrical, mechanical, and thermal properties. The nanocomposites reached a percolation threshold within CNT concentrations of 2–5 wt %; however, the mechanical properties of the host polymers were affected. For some nanocomposites, better properties were achieved with neat CNTs, whereas for others, master batches were better. Then, polycarbonate and poly(butylene terephthalate), both with a CNT concentration of 3 wt %, were injection‐molded with a screening design of experiments (DOE) to evaluate the effects of the processing parameters on the properties of the nanocomposites. Although only a 10‐run screening DOE was performed, such effects were clearly observed. The volume resistivity was significantly dependent on the working temperature and varied up to 4 orders of magnitude. Other properties were also dependent on the processing parameters, albeit in a less pronounced fashion. Transmission electron microscopy indicated that conductive samples formed a percolation network, whereas nonconductive samples did not. In conclusion, injection‐molding parameters have a significant impact on the properties of polymer/CNT nanocomposites, and these parameters should be optimized to yield the best results. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
In this study, immiscible polypropylene/poly(butylene succinate) (PP/PBS) blend-based nanocomposites were successfully prepared using an internal mixer. Carbon nanotube (CNT)/organo-montmorillonite (15A) and maleated PP (PPgMA) served as the reinforcing nanofillers and compatibilizer, respectively. Scanning electron microscopy results showed that PPgMA played an efficient role as compatibilizer for reducing the dispersed domain size of PBS in the blend. The added CNT was randomly distributed within the PP and PBS phases, whereas 15A was selectively located in the PBS domain. Differential scanning calorimetry results confirmed the nucleation effect of CNT on the PP/PBS crystallization, but 15A addition only facilitated the PBS crystallization. Thermogravimetric analysis revealed that CNT and 15A both enhanced the thermal stability of the blend under air environment. The rheological property measurements confirmed the significant change in microstructure of composites through developing the pseudo-network structure with CNT and/or 15A additions. The Young’s modulus (YM) of PP/PBS blend increased evidently with the inclusion of CNT. The incorporation of 2.5 phr CNT evidently increased the YM by approximately 243% compared with that of neat PBS. The electrical resistivity of the samples drastically reduced with the addition of CNT up to 10 orders of drop at a 3-phr CNT loading. The electrical percolation was constructed at a CNT content of 0.5 phr.  相似文献   

11.
Carbon nanotube (CNT)‐reinforced poly(ethylene 2,6‐naphthalate) (PEN) nanocomposites were prepared by direct melt blending process in a twin‐screw extruder. There is significant dependence of the crystallization and melting behavior of PEN/CNT nanocomposites on CNT content and crystallization temperature. The incorporation of CNT may favor the formation of the β‐form crystals in PEN/CNT nanocomposites, and more CNT content amplified this effect. In this PEN/CNT nanocomposite system, the CNT promoted the nucleation and the growth with higher crystallization rate of PEN/CNT nanocomposites, and simultaneously reduced the fold surface free energy and the work required in folding polymer chains in the polymer nanocomposites. In addition, the incorporation of a very small quantity of CNT significantly improved the mechanical properties of PEN/CNT nanocomposites. POLYM. ENG. SCI., 47:1715–1723, 2007. © 2007 Society of Plastics Engineers  相似文献   

12.
In this work, polyolefin-blend/clay nanocomposites based on low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and organically modified clay (OC) were prepared by melt extrusion. Various grades of maleic anhydride (MA) grafted polyethylene (PE-g-MA) were used and examined as compatibilizers in these nanocomposites. Differential scanning calorimetry analysis showed that OC and compatibilizer affect the crystallization behavior of LDPE/LLDPE with different mechanisms. Thermodynamic calculations of wetting coefficient based on interfacial energy between OC, LD, and LL, Morphological characterization based on field emission scanning electron microscopy, X-ray diffraction, small angles X-ray scattering, and dynamic rheology measurements revealed that the compatibilizer and OC were localized at the interface of LDPE and LLDPE phases with a preferred tendency toward one phase. Results demonstrated that at a specific amount of OC, there is an optimum compatibilizer concentration to achieve nanodispersed OC and beyond that the compatibilizer causes a structural change in the polymer crystalline morphology. It was also found that the tensile property enhancement of LDPE/LLDPE/OC nanocomposites is closely related to the crystalline structure development made by incorporation of both OC and compatibilizer.  相似文献   

13.
Polymer nanocomposites based on poly (ethylene 2,6‐naphthalate) (PEN) and carbon nanotubes (CNTs) were prepared by direct melt blending with a twin‐screw extruder. Dynamic thermogravimetric analysis was conducted on the PEN/CNT nanocomposites to clarify the effect of CNTs on the thermal decomposition behavior of the polymer nanocomposites. The thermal decomposition kinetics of the PEN/CNT nanocomposites was strongly dependent on the CNT content, the heating rate, and the gas atmosphere. On the basis of the thermal decomposition kinetic analysis, the variation of the activation energy for thermal decomposition revealed that a very small quantity of CNTs substantially improved the thermal stability and thermal decomposition of the PEN/CNT nanocomposites. Morphological observations demonstrated the formation of interconnected or network‐like structures of CNTs in the PEN matrix. The unique character of the CNTs introduced into the PEN matrix, such as the physical barrier effect of CNTs during thermal decomposition and the formation of interconnected or network‐like structures of CNTs, resulted in the enhancement of the thermal stability of the PEN/CNT nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Polyester nanocomposites based on poly(butylene terephthalate) (PBT) and carbon nanotube (CNT) were prepared by simple melt blending using a twin‐screw extruder. There is significant dependence of the thermal, rheological, and mechanical properties of the PBT nanocomposites on the concentration and dispersion state of CNT. The storage and loss moduli of the PBT nanocomposites increased with increasing frequency, and this enhancing effect was more pronounced at lower frequency region. The nonterminal behavior for the PBT nanocomposites was attributed to the nanotube–nanotube or polymer–nanotube interactions, and the dominant nanotube–nanotube interactions at high CNT content resulted in the formation of the interconnected network‐like structures of CNT in the PBT nanocomposites. The incorporation of a small quantity of CNT into the PBT matrix can substantially improve the mechanical properties, the heat distortion temperature, and the thermal stability of the PBT nanocomposites. The unique character of CNT dispersed in the PBT matrix resulted in the physical barrier effect against the thermal decomposition, leading to the improvement in the thermal stability of the PBT nanocomposites. This study also provides a design guide of CNT‐reinforced PBT nanocomposites with a great potential for industrial uses. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Linear low‐density polyethylene (LLDPE) is one of the most widely used polymers in many fields, but it is difficult to prepare LLDPE/clay nanocomposites because of the hydrophobic nature of LLDPE. In this study, the effectiveness of low molecular weight trimethoxysilyl‐modified polybutadiene (Organosilane) as a compatibilizer for LLDPE/clay nanocomposites was studied using X‐ray diffraction (XRD) and correlated with mechanical properties. Organosilane is known to react with dicumyl peroxide (DCP) to form free radicals, which react with LLDPE increasing the polarity of the LLDPE. Based on XRD and mechanical tests, it was concluded that Organosilane is a good compatibilizer for LLDPE and clay. Also when Organosilane was used in preparing LLDPE/clay nanocomposite foams, most mechanical properties were improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The objective of this research was to investigate thermal stability and dynamic mechanical behavior of Exfoliated graphite nanoplatelets (xGnP™)‐Linear Low‐Density Poly Ethylene (LLDPE) nanocomposites with different xGnP loading content. The xGnP‐LLDPE nanocomposites were fabricated by solution and melt mixing in various screw rotating systems such as co‐, counter‐, and modified‐corotating. The storage modulus (E′) of the composites at the starting point of −50°C increased as xGnP contents increased. E′ of the nanocomposite with only 7 wt% of xGnP was 2.5 times higher than that of the control LLDPE. Thermal expansion and the coefficient of thermal expansion of xGnP‐loaded composites were much lower than those of the control LLDPE in the range of 45–80°C (299.8 × 10−6/°C) and 85–100°C (365.3 × 10−6/°C). Thermal stability of the composites was also affected by xGnP dispersion in LLDPE matrix. The xGnP‐LLDPE nanocomposites by counter‐rotating screw system showed higher thermal stability than ones by co‐rotating and modified‐co‐rotating system at 5 wt% and 12 wt% of xGnP. xGnP had a great effect on high thermal stability of xGnP‐LLDPE composites to be applied as tube and film for electrical materials. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

17.
18.
An effective strategy to increase the properties of poly (lactic acid) (PLA) is the addition of carbon nanotubes (CNT). In this work, aiming to improve the surface adhesion of PLA and CNT a new compatibilizer agent was prepared by reactive processing, PLA grafted maleic anhydride (PLA-g-MA) using benzoyl peroxide and maleic anhydride. The effectiveness of the PLA-g-MA as a compatibilizer agent was verified for PLA/PLA-g-MA/CNT nanocomposites. PLA and PLA-g-MA samples were characterized by Fourier transform infrared spectroscopy (FT-IR) to confirm the grafting reaction of maleic anhydride on PLA chains and by rheological analysis to prove the changes in the matrix PLA after the graphitization reaction. Thermal (differential scanning calorimetry and thermogravimetric analysis), mechanical tests (Izod impact strength and tensile test), and morphological characterization were used to verify the effect of the compatibilizer agent. The preparation of PLA-g-MA by reactive extrusion processing proved satisfactory and the nanocomposites presented good thermal and mechanical properties. The addition of the PLA-g-MA also contributed to the greater distribution of CNT and can be used as an alternative for the production of PLA/CNT nanocomposites.  相似文献   

19.
The thermoplastic polyurethane/multiwalled carbon nanotube (TPU/CNT) nanocomposites with high conductivity and low percolation threshold value were prepared by melting blending and annealing treatment. The effect of annealing process on the microphase structure and the properties of TPU/CNT nanocomposites was studied. It has been shown that CNT flocculation can occur in TPU/CNT nanocomposites during the annealing process. At a critical CNT content, which defined the percolation threshold, CNTs could form conductivity network. The conductive percolation threshold value of TPU/CNT nanocomposites was decreased from 10 to 4% after annealing process, and the conductivity of TPU/CNT nanocomposites with 10 vol % of CNT could reach 1.1 S/m after an annealing time of 1 h. The significant enhancement of electrical conductivity was influenced by the annealing time and the content of CNTs. The formation of CNT networks was also verified by dynamic viscoelastic characterization. The results of X‐ray diffraction and differential scanning calorimetry indicated that annealing process reinforced the microphase separation of the nanocomposites. Mechanical properties test showed that the annealing treatment was in favor of improving the mechanical properties; however, further increase in the annealing time has negative effect on the mechanical properties. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
BACKGROUND: In situ formation of polyethylene/clay nanocomposites is one of the prevalent preparation methods that include also solution blending and melt blending with regard to process simplification, economy in cost, environment protection and marked improvement in the mechanical properties of the polymeric matrix. In the work reported here, the preparation of linear low‐density polyethylene (LLDPE) and fabrication of polymer/clay nanocomposites were combined into a facile route by immobilizing pre‐catalysts for ethylene oligomerization on montmorillonite (MMT). RESULTS: [(2‐ArN?C(Me))2C5H3N]FeCl2 (Ar = 2,4‐Me2(C6H3)) was supported on MMT treated using three different methods. The MMT‐supported iron complex together with metallocene compound rac‐Et(Ind)2ZrCl2 catalyzed ethylene to LLDPE/MMT nanocomposites upon activation with methylaluminoxane. The oligomer that was formed between layers of MMT promoted further exfoliation of MMT layers. The LLDPE/MMT nanocomposites were highly stable upon heating. Detailed scanning electron microscopy analysis revealed that the marked improvement in impact strength of the LLDPE/MMT nanocomposites originated from the dispersed MMT layers which underwent cavitation upon impact and caused plastic deformation to absorb most of the impact energy. In general, the mechanical properties of the LLDPE/MMT nanocomposites were improved as a result of the uniform dispersion of MMT layers in the LLDPE matrix. CONCLUSION: The use of the MMT‐supported iron‐based diimine complex together with metallocene led to ethylene copolymerization between layers of MMT to form LLDPE/MMT nanocomposites. The introduction of exfoliated MMT layers greatly improved the thermal stability and mechanical properties of LLDPE. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号