首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Myeloablative radioimmunotherapy using (131)I-tositumomab (anti-CD20) monoclonal antibodies is an effective therapy for B-cell non-Hodgkin's lymphoma. The amount of radioactivity for radioimmunotherapy may be determined by several methods, including those based on whole-body retention and on dose to a limiting normal organ. The goal of each approach is to deliver maximal myeloablative amounts of radioactivity within the tolerance of critical normal organs. METHODS: Records of 100 consecutive patients who underwent biodistribution and dosimetry evaluation after tracer infusion of (131)I-tositumomab before radioimmunotherapy were reviewed. We assessed organ and tissue activities over time by serial gamma-camera imaging to calculate radiation-absorbed doses. Organ volumes were determined from CT scans for organ-specific dosimetry. These dose estimates helped us to determine therapy on the basis of projected dose to the critical normal organ receiving a maximum tolerable radiation dose. We compared organ-specific dosimetry for treatment planning with the whole-body dose-assessment method by retrospectively analyzing the differences in projected organ-absorbed doses and their ratios. RESULTS: Mean organ doses per unit of administered activity (mGy/MBq) estimated by both methods were 0.33 for liver and 0.33 for lungs by the whole-body method and 1.52 for liver and 1.74 for lungs by the organ-specific method (P=0.0001). The median differences between methods were 0.92 mGy/MBq (range, 0.36-2.2 mGy/MBq) for lungs, 0.82 mGy/MBq (range, 0.28-1.67 mGy/MBq) for liver, and -0.01 mGy/MBq (range, -0.18-0.16 mGy/MBq) for whole body. The median ratios of the treatment activities based on limiting normal-organ dose were 5.12 (range, 2.33-10.01) for lungs, 4.14 (range, 2.16-6.67) for liver, and 0.94 (range, 0.79-1.22) for whole body. We found substantial differences between the dose estimated by the 2 methods for liver and lungs (P=0.0001). CONCLUSION: Dosimetry based on whole-body retention will underestimate the organ doses, and a preferable approach is to evaluate organ-specific doses by accounting for actual radionuclide biodistribution. Myeloablative treatments based on the latter approach allow administration of the maximum amount of radioactivity while minimizing toxicity.  相似文献   

2.
99mTc-labeled anti-stage specific embryonic antigen-1 (anti-SSEA-1) is an injectable IgM antibody derived from mice. It binds to CD15 antigens on some granulocytic subpopulations of human white blood cells in vivo after systemic administration. The purpose of this study was to measure biodistribution of 99mTc-labeled anti-SSEA-1 and perform radiation dosimetry in 10 healthy human volunteers. METHODS: Transmission scans and whole-body images were acquired sequentially on a dual-head camera for 32 h after the intravenous administration of about 370 MBq (10.0 mCi) of the radiopharmaceutical. Renal excretion fractions were measured from 10 to 14 discrete urine specimens voided over 27.9 +/- 2.0 h. Multiexponential functions were fit iteratively to the time-activity curves for 17 regions of interest using a nonlinear least squares regression algorithm. The curves were integrated numerically to yield source organ residence times. Gender-specific radiation doses were then estimated individually for each subject, using the MIRD technique, before any results were averaged. RESULTS: Quantification showed that the kidneys excreted 39.5% +/- 6.5% of the administered dose during the first 24 h after administration. Image analysis showed that 10%-14% of the radioactivity went to the spleen, while more than 40% went to the liver. Residence times were longest in the liver (3.37 h), followed by the bone marrow (1.09 h), kidneys (0.84 h) and the spleen (0.65 h). The dose-limiting organ in both men and women was the spleen, which received an average of 0.062 mGy/MBq (0.23 rad/mCi, range 0.08-0.30 rad/mCi), followed by the kidneys (0.051 mGy/MBq), liver (0.048 mGy/MBq) and urinary bladder (0.032 mGy/MBq). The effective dose equivalent was 0.018 mSv/MBq (0.068 rem/mCi). CONCLUSION: The findings suggest that the radiation dosimetry profile for this new infection imaging agent is highly favorable.  相似文献   

3.
Recent advances in receptor-mediated tumour imaging have resulted in the development of a new somatostatin analogue, DOTA-dPhe(1)-Tyr(3)-octreotide. This new compound, named DOTATOC, has shown high affinity for somatostatin receptors, ease of labelling and stability with yttrium-90 and favourable biodistribution in animal models. The aim of this work was to evaluate the biodistribution and dosimetry of DOTATOC radiolabelled with indium-111, in anticipation of therapy trials with (90)Y-DOTATOC in patients. Eighteen patients were injected with DOTATOC (10 microg), labelled with 150-185 MBq of (111)In. Blood and urine samples were collected throughout the duration of the study (0-2 days). Planar and single-photon emission tomography images were acquired at 0.5, 3-4, 24 and 48 h and time-activity curves were obtained for organs and tumours. A compartmental model was used to determine the kinetic parameters for each organ. Dose calculations were performed according to the MIRD formalism. Specific activities of >37 GBq/ micromol were routinely achieved. Patients showed no acute or delayed adverse reactions. The residence time for (111)In-DOTATOC in blood was 0.9+/-0.4 h. The injected activity excreted in the urine in the first 24 h was 73%+/-11%. The agent localized primarily in spleen, kidneys and liver. The residence times in source organs were: 2.2+/-1.8 h in spleen, 1.7+/-1.2 h in kidneys, 2.4+/-1.9 h in liver, 1.5+/-0.3 h in urinary bladder and 9. 4+/-5.5 h in the remainder of the body; the mean residence time in tumour was 0.47 h (range: 0.03-6.50 h). Based on our findings, the predicted absorbed doses for (90)Y-DOTATOC would be 7.6+/-6.3 (spleen), 3.3+/-2.2 (kidneys), 0.7+/-0.6 (liver), 2.2+/-0.3 (bladder), 0.03+/-0.01 (red marrow) and 10.1 (range: 1.4-31.0) (tumour) mGy/MBq. These results indicate that high activities of (90)Y-DOTATOC can be administered with low risk of myelotoxicity, although with potentially high radiation doses to the spleen and kidneys. Tumour doses were high enough in most cases to make it likely that the desired therapeutic response desired would be obtained.  相似文献   

4.
Technical aspects and results of the dosimetric assessments of postoperative radioiodine ablation in the framework of an international, prospective, controlled, randomized, comparative study of the effectiveness of ablation therapy with 3.7 GBq (131)I in differentiated thyroid cancer after stimulation with recombinant human TSH (rhTSH) or by thyroid hormone withdrawal (THW) are presented. METHODS: Sixty-three patients were randomized after thyroidectomy to either the THW or the rhTSH group. Scintigraphic neck images were acquired starting 48 h after radioiodine administration to assess biokinetics in the thyroid remnant. The activity in blood samples was quantified and data from whole-body probe measurements and scintigraphic whole-body scans were combined to deduce retention curves in blood and whole body, respectively. The absorbed dose to the blood was calculated using a modified approach based on the formalism of the MIRD Committee of the Society of Nuclear Medicine. RESULTS: The effective half-time in the remnant thyroid tissue was significantly longer after rhTSH than THW (67.6 +/- 48.8 vs. 48.0 +/- 52.6 h, respectively; P = 0.01), whereas the observed differences of the mean 48-h (131)I uptakes (0.5% +/- 0.7% vs. 0.9% +/- 1.0% after THW; P = 0.1) and residence times (0.9 +/- 1.3 vs. 1.4 +/- 1.5 h after THW; P = 0.1) between the rhTSH and THW groups were not statistically significant. The specific absorbed dose to the blood was significantly (P <0.0001) lower after administration of rhTSH (mean, 0.109 +/- 0.028 mGy/MBq; maximum, 0.18 mGy/MBq) than after THW (mean, 0.167 +/- 0.061 mGy/MBq; maximum, 0.35 mGy/MBq), indicating that higher activities of radioiodine might be safely administered after exogenous stimulation with rhTSH. CONCLUSION: Indication of an influence of the residence time of radioiodine in the blood on the fractional uptake into thyroid remnant was found. A novel regimen is proposed in which therapeutic activities to be administered are determined from the individual specific blood dose.  相似文献   

5.
2-[18F]Fluoro-A-85380 (2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine, 2-[18F]FA) is a recently developed PET radioligand for noninvasive imaging of nicotinic acetylcholine receptors. Previous radiation absorbed dose estimates for 2-[18F]FA were limited to evaluation of activity in only several critical organs. Here, we performed 2-[18F]FA radiation dosimetry studies on two healthy human volunteers to obtain data for all important body organs. Intravenous injection of 2.9 MBq/kg of 2-[18F]FA was followed by dynamic PET imaging. Regions of interest were placed over images of each organ to generate time–activity curves, from which we computed residence times. Radiation absorbed doses were calculated from the residence times using the MIRDOSE 3.0 program (version 3.0, ORISE, Oak Ridge, TN). The urinary bladder wall receives the highest radiation absorbed dose (0.153 mGy/MBq, 0.566 rad/mCi, for a 2.4-h voiding interval), followed by the liver (0.0496 mGy/MBq, 0.184 rad/mCi) and the kidneys (0.0470 mGy/MBq, 0.174 rad/mCi). The mean effective dose equivalent is estimated to be 0.0278 mSv/MBq (0.103 rem/mCi), indicating that radiation dosimetry associated with 2-[18F]FA is within acceptable limits.  相似文献   

6.
目的对^131I-美妥昔单克隆抗体(简称单抗)联合动脉内化疗栓塞(TACE)治疗原发性肝癌患者器官的内照射吸收剂量进行估算。方法21例患者肝动脉内按体质量注入^131I-美妥昔单抗(27.75MBq/kg)和混合化疗药物的碘化油乳剂。用1计数仪测量5min和0.5,2,4,24,48,72,120,168h血样和尿样的放射性。用SPECT仪行4或5次全身扫描。用感兴趣区图像处理法计算主要器官和全身放射性活度占给予放射性活度的百分数(%ID),SPSS12.0软件拟合时间-%ID曲线,计算累积活度,依据医学内照射辐射剂量学(MIRD)方法和血液间接法计算器官和红骨髓的内照射吸收剂量,计算肿瘤/非肿瘤放射性比值。结果^131I-美妥昔单抗的平均剂量为1.89(1.47~223)GBq/次。显像示放射性主要浓聚于肝区肿瘤组织,随时间延长,甲状腺后期有放射性浓聚,体内其他组织未见明显放射性分布。器官吸收剂量(12例):肝(3.19±1.01)Gy,脾(3.65±2.41)Gy,甲状腺(3.61±2.40)Gy,肺(0.97±0.23)Gy,肾(0.96±0.35)Gy,全身(0.57±1.55)Gy,红骨髓(0.55±0.09)Gy(7例)。肿瘤/肝放射陛比值(7例):3h为2.88±1.11,64h为2.15±0.53,120h为1.81±0.39,168h为1.64±0.39。结论依据MIRD方法计算获得了主要器官、红骨髓和全身内照射吸收剂量,这对更好评价疗效、不良反应和制订个体化方案有重要意义。  相似文献   

7.
Purpose Cu-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) is an effective marker for the delineation of hypoxic tissue. Dosimetry calculations by the established Medical Internal Radionuclide Dose (MIRD) approach were performed with both animal and patient data.Methods Human absorbed dose estimates extrapolated from rat data were based on the biodistribution of 61Cu-ATSM in adult rats. Eighteen tissues were harvested and time–activity curves generated. The measured residence times and the MIRD S-values for 60Cu-ATSM were used to estimate human absorbed doses. The biodistribution of the tracer was directly measured in five patients injected with approximately 480 MBq of 60Cu-ATSM and imaged by positron emission tomography (PET) with a whole-body protocol. The combined data from all patients were used to derive organ residence times, and organ doses were calculated by MIRD methodology for 60Cu-ATSM, 61Cu-ATSM, 62Cu-ATSM, and 64Cu-ATSM.Results Human absorbed dose estimates extrapolated from rat biodistribution data indicated that the kidneys appeared to be the dose-limiting organ (0.083 mGy/MBq) with a whole-body dose of 0.009 mGy/MBq. Based on the human PET imaging data, the liver appeared as the dose-limiting organ, with an average radiation dose of 0.064 mGy/MBq. The whole-body dose was 0.009 mGy/MBq and the effective dose was 0.011 mSv/MBq.Conclusion These relatively small absorbed doses to normal organs allow for the safe injection of 500–800 MBq of 60Cu-ATSM, which is sufficient for PET imaging in clinical trials.  相似文献   

8.
内照射剂量学指导131I治疗分化型甲状腺癌弥散性肺转移   总被引:1,自引:0,他引:1  
目的 从内照射剂量学角度探讨如何确定治疗分化型甲状腺癌弥散性肺转移(DTC-DPM)的131I活度.方法 依据美国核医学会医用内照射剂量学委员会提出的内照射剂量计算方法(MIRD体系),将131I治疗DTC-DPM服131I后48 h时滞留于患者体内的131I不超过2.96 GBq的限定(2.96 GBq法则)转变为服131I后48 h时肺组织剂量率限定(DRCLU·48h).假设眼131I后48 h时沉积于肺的131I与滞留于全身的131I活度比(F48h)在0.6~0.9间,131I在肺及剩余组织的有效半衰期(TLL、TRB)分别为20~120 h和10~20 h,参照OLINDA(Organ Level Internal Dose Assessment)软件中不同参考人体数据,计算不同DTC-DPM患者的131Ⅰ最大安全治疗活度(Amax).结果 依据MIRD体系和2.96 GBq法则,131I治疗DTC-DPM,DRCLU·48h应不超过46.4 mGy/h.按照不同的F48h、TLU及TRB,成年男性、成年女性、15岁和10岁DTC-DPM患者的Amax分别在6.77~81.36 GBq、5.29~56.20 GBq、5.08~55.19 GBq和3.87~40.52 GBq间.结论 内照射剂量学指导131I治疗DTC-DPM充分地考虑了131I在不同患者体内的代谢动力学差异,可在避免发生放射性肺炎、肺纤维化的前提下,调节131I用量.  相似文献   

9.
In conjunction with research into the relative clinical suitability of radionuclides for heart imaging, estimates of the radiation dosimetry for 43K, 81Rb, 129Cs, and 201Tl were calculated. Estimates of absorbed radiation dose for the heart, kidneys, liver, lungs, testes, and whole body of the standard man were computed from published distribution data in rats via the MIRD method by assuming that the concentration in each organ per initial mean whole-body concentration is the same in rats and humans. The whole-body absorbed radiation doses from 81Rb, 129Cs, 201Tl, and 43K are 0.08, 0.17, 0.24, and 0.60 rads/mCi administered intravenously. In general, the organ doses from the four radionuclides follow the same order.  相似文献   

10.
Central adrenoceptors cannot currently be studied by PET neuroimaging due to a lack of appropriate radioligands. The fast-acting antidepressant drug mirtazapine, radiolabelled for PET, may be of value for assessing central adrenoceptors, provided that the radiation dosimetry of the radioligand is acceptable. To obtain that information, serial whole-body images were made for up to 70 min following intravenous injection of 326 and 185 MBq [N-methyl-11C]mirtazapine (specific activities E.O.S. of 119 and 39G Bq/micromol, respectively) in a healthy volunteer. Ten source organs plus remaining body were considered in estimating absorbed radiation doses calculated using MIRD 3.1. The highest absorbed organ doses were found to the lungs (3.4 x 10(-2) mGy/MBq), adrenals (1.2 x 10(-2) mGy/MBq), spleen (1.2 x 10(-2) mGy/MBq), and gallbladder wall (1.1 x 10(-2) mGy/MBq). The effective dose was estimated to be 6.8 x 10(-3) mSv/MBq, which is similar to that produced by several radioligands used routinely for neuroimaging.  相似文献   

11.
18F]fluoroestradiol radiation dosimetry in human PET studies.   总被引:6,自引:0,他引:6  
[18F]16alpha-fluoroestradiol (FES) is a PET imaging agent useful for the study of estrogen receptors in breast cancer. We estimated the radiation dosimetry for this tracer using data obtained in patient studies. METHODS: Time-dependent tissue concentrations of radioactivity were determined from blood samples and PET images in 49 patients (52 studies) after intravenous injection of FES. Radiation absorbed doses were calculated using the procedures of the MIRD committee, taking into account the variation in dose based on the distribution of activities observed in the individual patients. Effective dose equivalent was calculated using International Commission on Radiological Protection Publication 60 weights for the standard woman. RESULTS: The effective dose equivalent was 0.022 mSv/MBq (80 mrem/mCi). The organ that received the highest dose was the liver (0.13 mGy/MBq [470 mrad/mCi]), followed by the gallbladder (0.10 mGy/MBq [380 mrad/mCi]) and the urinary bladder (0.05 mGy/MBq [190 mrad/mCi]). CONCLUSION: The organ doses are comparable to those associated with other commonly performed nuclear medicine tests. FES is a useful estrogen receptor-imaging agent, and the potential radiation risks associated with this study are well within accepted limits.  相似文献   

12.
This study was undertaken to measure the biokinetics and organ dosimetry of indium-111-labeled monoclonal antibodies (MoAbs) with a whole-body gamma camera imaging technique. Twenty patients with primary lung cancer were studied with two different MoAb agents (anti-carcinoembryonic antigen ZCEO25 and antiadenocarcinoma LA20207). Imaging was performed at 1, 24, 72, and 144 hours after injection. Scintigraphic whole-body retention was verified by means of comparison with the results from in vitro counting of excreta. Organ retention was verified in an abdominal phantom. The MoAb cleared slowly from the heart and lungs, the brain and spleen showed no clearance, and the liver showed increased activity over the 6-day period. Dosimetry for ZCE025 showed a dose to the liver of 1.3 rad/mCi (0.36 mGy/MBq); heart, 1.5 rad/mCi (0.40 mGy/MBq); spleen, 1.1 rad/mCi (0.29 mGy/MBq); total body, 0.49 rad/mCi (0.13 mGy/MBq); and testes, 0.39 rad/mCi (0.11 mGy/MBq). The dosimetry for LA20207 was similar.  相似文献   

13.
Pretargeted radioimmunotherapy (RIT) using CC49 fusion protein, comprised of CC49-(scFv)4 and streptavidin, in conjunction with 90Y/111In-DOTA-biotin (DOTA = dodecanetetraacetic acid) provides a new opportunity to improve efficacy by increasing the tumor-to-normal tissue dose ratio. To our knowledge, the patient-specific dosimetry of pretargeted 90Y/111In-DOTA-biotin after CC49 fusion protein in patients has not been reported previously. METHODS: Nine patients received 3-step pretargeted RIT: (a) 160 mg/m2 of CC49 fusion protein, (b) synthetic clearing agent (sCA) at 48 or 72 h later, and (c) 90Y/111In-DOTA-biotin 24 h after the sCA administration. Sequential whole-body 111In images were acquired immediately and at 2-144 h after injection of 90Y/111In-DOTA-biotin. Geometric-mean quantification with background and attenuation correction was used for liver and lung dosimetry. Effective point source quantification was used for spleen, kidneys, and tumors. Organ and tumor 90Y doses were calculated based on 111In imaging data and the MIRD formalism using patient-specific organ masses determined from CT images. Patient-specific marrow doses were determined based on radioactivity concentration in the blood. RESULTS: The 90Y/111In-DOTA-biotin had a rapid plasma clearance, which was biphasic with <10% residual at 8 h. Organ masses ranged from 1,263 to 3,855 g for liver, 95 to 1,009 g for spleen, and 309 to 578 g for kidneys. The patient-specific mean 90Y dose (cGy/37 MBq, or rad/mCi) was 0.53 (0.32-0.78) to whole body, 3.75 (0.63-6.89) to liver, 2.32 (0.58-4.46) to spleen, 7.02 (3.36-11.2) to kidneys, 0.30 (0.09-0.44) to lungs, 0.22 (0.12-0.34) to marrow, and 28.9 (4.18-121.6) to tumors. CONCLUSION: Radiation dose to normal organs from circulating radionuclide is substantially reduced using pretargeted RIT. Tumor-to-normal organ dose ratios were increased about 8- to 11-fold compared with reported patient-specific mean dose to liver, spleen, marrow, and tumors from 90Y-CC49.  相似文献   

14.
In connection with clinical 131I-MIBG studies of patients with suspected pheochromocytoma and adrenomedullary hyperplasia quantitative biokinetic data have been collected in order to improve the present estimations of absorbed dose to various organs and tissues. Whole-body profiles as a function of time were measured with a whole-body counter. The retention in the total body and in the thyroid gland could be derived from the measured whole-body profiles by summing up the corresponding values. The retention of 131I-MIBG could not be exactly measured for further organs from the whole-body profiles in man. For this reason animal studies were performed with mice. The biokinetic animal data were transferred to man in form of the cumulative activity for the various organs. The mean absorbed dose for selected organs per injected activity unit was calculated using the concept of absorbed fractions (MIRD method) taking into account the radioactivity within the remaining body. Except for both the adrenal medulla and the thyroid gland the absorbed doses for all the other selected organs are in a range from 0.108 mGy MBq-1 for the testes to 0.176 mGy MBq-1 for the lungs. The absorbed dose to the thyroid gland amounts to the considerable value of 5.69 mGy MBq-1 although the thyroid gland was blocked. The greatest absorbed dose was estimated for the normal adrenal medulla with 18.67 mGy MBq-1.  相似文献   

15.
A methodology was developed determining patient releasability after radioimmunotherapy with tositumomab and (131)I-tositumomab for the treatment of non-Hodgkin's lymphoma. METHODS: Dosimetry data were obtained and analyzed after 157 administrations of (131)I-tositumomab to 139 patients with relapsed or refractory non-Hodgkin's lymphoma. Tositumomab and (131)I-tositumomab therapy included dosimetric (low activity) and therapeutic (high activity) administrations. For each patient, the total-body residence time was calculated after the dosimetric administration from total-body counts obtained over 6 or 7 d and was then used to determine the appropriate therapeutic activity to deliver a specific total-body radiation dose. Patient dose rates at 1 m were measured immediately after the therapeutic infusion. Patient-specific calculations based on the measured total-body residence time and dose rate for (131)I-tositumomab were derived to determine the patient's maximum releasable dose rate at 1 m, estimated radiation dose to maximally exposed individuals, and the amount of time necessary to avoid close contact with others. RESULTS: The mean administered activity (+/-SD), determined by dosimetry studies for each patient before therapy, was 3,108 +/- 1,073 MBq (84 +/- 29 mCi) (range, 1,221 +/- 5,957 MBq [33--161 mCi]). Immediately after treatment, the mean measured dose rate (+/- SD) at 1 m was 0.109 +/- 0.032 mSv/h (10.9 +/- 3.2 mrem/h; range, 0.04--0.24 mSv/h [4--24 mrem/h]). The measured dose rates were 60% (range, 37%--90%; P < 0.0001) of the theoretic dose rates from a point source in air predicted using the dose equivalent rate per unit activity of (131)I (5.95 x 10(-5) mSv/MBq h [0.22 mrem/mCi h] at 1 m). The mean estimated radiation dose to the maximally exposed individual was 3.06 mSv (306 mrem) (range, 1.95--4.96 mSv [195--496 mrem]). On the basis of current regulatory patient-release criteria, all (131)I-tositumomab--treated patients were determined to be releasable by comparing the dose rate at 1 m with a predetermined maximum releasable dose rate. Detailed instructions were provided to limit family members' exposure. CONCLUSION: A methodology has been developed for the release of patients administered radioactive materials based on the new Nuclear Regulatory Commission regulations. This approach uses a patient-specific dose calculation based on the measured total-body residence time and dose rate. This analysis shows the feasibility of outpatient radioimmunotherapy with tositumomab and (131)I-tositumomab.  相似文献   

16.
[(18)F]1-(Fluoropropyl)-4-[(4-cyanophenoxy)methyl]piperidine ([(18)F]FPS) is a novel high affinity (KD = 0.5 nM) sigma receptor radioligand that exhibits saturable and selective in vivo binding to sigma receptors in rats, mice and non-human primates. In order to support an IND application for the characterization of [(18)F]FPS through PET imaging studies in humans, single organ and whole body radiation adsorbed doses associated with [(18)F]FPS injection were estimated from distribution data obtained in rats. In addition, acute toxicity studies were conducted in rats and rabbits and limited toxicity analyses were performed in dogs. Radiation dosimetry estimates obtained using rat biodistribution analysis of [(18)F]FPS suggest that most organs would receive around 0.012-0.015 mGy/MBq. The adrenal glands, brain, kidneys, lungs, and spleen would receive slightly higher doses (0.02-0.03 mGy/MBq). The adrenal glands were identified as the organs receiving the greatest adsorbed radiation dose. The total exposure resulting from a 5 mCi administration of [(18)F]FPS is well below the FDA defined limits for yearly cumulative and per study exposures to research participants. Extended acute toxicity studies in rats and rabbits, and limited acute toxicity studies in beagle dogs suggest at least a 175-fold safety margin in humans at a mass dose limit of 2.8 microg per intravenous injection. This estimate is based on the measured no observable effect doses (in mg/m(2)) in these species. These data support the expectation that [(18)F]FPS will be safe for use in human PET imaging studies at a maximum administration of 5 mCi and a mass dose equal to or less than 2.8 microg FPS per injection.  相似文献   

17.
2-((2-((Dimethylamino)methyl)phenyl)thio)-5-(123)I-iodophenylamine ((123)I-ADAM) is a new radiopharmaceutical that selectively binds the central nervous system serotonin transporters. The purpose of this study was to measure its whole-body biokinetics and estimate its radiation dosimetry in healthy human volunteers. The study was conducted within a regulatory framework that required its pharmacologic safety to be assessed simultaneously. METHODS: The sample included 7 subjects ranging in age from 22 to 54 y old. An average of 12.7 whole-body scans were acquired sequentially on a dual-head camera for up to 50 h after the intravenous administration of 185 MBq (5 mCi) (123)I-ADAM. The fraction of the administered dose in 13 regions of interest (ROIs) was quantified from the attenuation-corrected geometric mean counts in conjugate views. Multiexponential functions were iteratively fit to each time-activity curve using a nonlinear, least-squares regression algorithm. These curves were numerically integrated to yield source organ residence times. Gender-specific radiation doses were then estimated with the MIRD technique. SPECT brain scans obtained 3 h after injection were evaluated using an ROI analysis to determine the range of values for the region to cerebellum. RESULTS: There were no pharmacologic effects of the radiotracer on any of the subjects, including no change in heart rate, blood pressure, or laboratory results. Early planar images showed differentially increased activity in the lungs. SPECT images demonstrated that the radiopharmaceutical localized in the midbrain in a distribution that is consistent with selective transporter binding. The dose-limiting organ in both men and women was the distal colon, which received an average of 0.12 mGy/MBq (0.43 rad/mCi) (range, 0.098-0.15 mGy/MBq). The effective dose equivalent and effective dose for (123)I-ADAM were 0.037 +/- 0.003 mSv/MBq and 0.036 +/- 0.003 mSv/MBq, respectively. The mean adult male value of effective dose for (123)I-ADAM is similar in magnitude to that of (111)In-diethylenetriaminepentaacetic acid (0.035 mGy/MBq), half that of (111)In-pentetreotide (0.81 mGy/MBq), and approximately twice that of (123)I-inosine 5'-monophosphate (0.018 mGy/MBq). The differences in results between this study and a previous publication are most likely due to several factors, the most prominent being this dataset used attenuation correction of the scintigraphic data. Region-to-cerebellum ratios for the brain SPECT scans were 1.95 +/- 0.13 for the midbrain, 1.27 +/- 0.10 for the medial temporal regions, and 1.11 +/- 0.07 for the striatum. CONCLUSION: (123)I-ADAM may be a safe and effective radiotracer for imaging serotonin transporters in the brain and the body.  相似文献   

18.
Most patients with non-Hodgkin's lymphoma (NHL) achieve remission but, despite newer drugs, the natural history of this disease has not improved during the last 20 years. Less than one half of patients with aggressive NHL are cured, and few of those with low-grade NHL are curable. Furthermore, NHL becomes progressively more chemoresistant while remaining responsive to external beam radiation therapy. Radioimmunotherapy (RIT) is a logical strategy for the treatment of NHL because this disease is multifocal and radiosensitive. Because of their remarkable effectiveness for RIT, 2 anti-CD20 monoclonal antibodies (mAbs), one labeled with (111)In for imaging or (90)Y for therapy and a second labeled with (131)I for imaging and therapy, have been approved for use in patients with NHL. These drugs have proven remarkably effective and safe. Evidence for the importance of the radionuclide is manifested by the data in the randomized pivotal phase III trial of (90)Y-ibritumomab that revealed response rates were several times greater in the (90)Y-ibritumomab arm than in the rituximab arm. A second drug for RIT, (131)I-tositumomab, was compared in a pivotal trial with the efficacy of the last chemotherapy received by each patient. Once again, response rates were much higher for RIT. Both (90)Y-ibritumomab and (131)I-tositumomab require preinfusion of several hundred milligrams of unlabeled anti-CD20 mAb to obtain "favorable" biodistribution, that is, targeting of NHL. Response rates for other mAbs and radionuclides in NHL also have been high but these drugs have not reached the approval stage. These drugs can be used safely by physicians who have suitable training and judgment. Unlike chemotherapy, RIT is not associated with mucositis, hair loss, or persistent nausea or vomiting. Although hematologic toxicity is dose limiting, hospitalization for febrile neutropenia is uncommon. Randomized trials of RIT in different formulations have not been conducted, but there is evidence to suggest that the mAb, antigen, radionuclide, chelator, linker, and dosing strategy may make a difference in the outcome.  相似文献   

19.
Recent advances in receptor-mediated tumour imaging have resulted in the development of a new somatostatin analogue, DOTA-dPhe1-Tyr3-octreotide. This new compound, named DOTATOC, has shown high affinity for somatostatin receptors, ease of labelling and stability with yttrium-90 and favourable biodistribution in animal models. The aim of this work was to evaluate the biodistribution and dosimetry of DOTATOC radiolabelled with indium-111, in anticipation of therapy trials with 90Y-DOTATOC in patients. Eighteen patients were injected with DOTATOC (10 μg), labelled with 150–185 MBq of 111In. Blood and urine samples were collected throughout the duration of the study (0–2 days). Planar and single-photon emission tomography images were acquired at 0.5, 3–4, 24 and 48 h and time-activity curves were obtained for organs and tumours. A compartmental model was used to determine the kinetic parameters for each organ. Dose calculations were performed according to the MIRD formalism. Specific activities of >37 GBq/ μmol were routinely achieved. Patients showed no acute or delayed adverse reactions. The residence time for 111In-DOTATOC in blood was 0.9±0.4 h. The injected activity excreted in the urine in the first 24 h was 73%±11%. The agent localized primarily in spleen, kidneys and liver. The residence times in source organs were: 2.2±1.8 h in spleen, 1.7±1.2 h in kidneys, 2.4±1.9 h in liver, 1.5±0.3 h in urinary bladder and 9.4±5.5 h in the remainder of the body; the mean residence time in tumour was 0.47 h (range: 0.03–6.50 h). Based on our findings, the predicted absorbed doses for 90Y-DOTATOC would be 7.6±6.3 (spleen), 3.3±2.2 (kidneys), 0.7±0.6 (liver), 2.2±0.3 (bladder), 0.03±0.01 (red marrow) and 10.1 (range: 1.4–31.0) (tumour) mGy/MBq. These results indicate that high activities of 90Y-DOTATOC can be administered with low risk of myelotoxicity, although with potentially high radiation doses to the spleen and kidneys. Tumour doses were high enough in most cases to make it likely that the disired therapeutic response desired would be obtained. Received 17 February and in revised form 22 April 1999  相似文献   

20.
Ibritumomab tiuxetan is an anti-CD20 murine IgG1 kappa monoclonal antibody (ibritumomab) conjugated to the linker-chelator tiuxetan, which securely chelates (111)In for imaging or dosimetry and (90)Y for radioimmunotherapy (RIT). Dosimetry and pharmacokinetic data from 4 clinical trials of (90)Y-ibritumomab tiuxetan RIT for relapsed or refractory B-cell non-Hodgkin's lymphoma (NHL) were combined and assessed for correlations with toxicity data. METHODS: Data from 179 patients were available for analysis. Common eligibility criteria included <25% bone marrow involvement by NHL, no prior myeloablative therapy, and no prior RIT. The baseline platelet count was required to be > or = 100,000 cells/mm(3) for the reduced (90)Y-ibritumomab tiuxetan administered dose (7.4-11 MBq/kg [0.2-0.3 mCi/kg]) or > or = 150,000 cells/mm(3) for the standard (90)Y-ibritumomab tiuxetan administered dose (15 MBq/kg [0.4 mCi/kg]). Patients were given a tracer administered dose of 185 MBq (5 mCi) (111)In-ibritumomab tiuxetan on day 0, evaluated with dosimetry, and then a therapeutic administered dose of 7.4-15 MBq/kg (0.2-0.4 mCi/kg) (90)Y-ibritumomab tiuxetan on day 7. Both ibritumomab tiuxetan administered doses were preceded by an infusion of 250 mg/m(2) rituximab to clear peripheral B-cells and improve ibritumomab tiuxetan biodistribution. Residence times for (90)Y in blood and major organs were estimated from (111)In biodistribution, and the MIRDOSE3 computer software program was used, with modifications to account for patient-specific organ masses, to calculate radiation absorbed doses to organs and red marrow. RESULTS: Median radiation absorbed doses for (90)Y were 7.42 Gy to spleen, 4.50 Gy to liver, 2.11 Gy to lung, 0.23 Gy to kidney, 0.62 Gy (blood-derived method) and 0.97 Gy (sacral image-derived method) to red marrow, and 0.57 Gy to total body. The median effective blood half-life was 27 h, and the area under the curve (AUC) was 25 h. No patient failed to meet protocol-defined dosimetry safety criteria and all patients were eligible for treatment. Observed toxicity was primarily hematologic, transient, and reversible. Hematologic toxicity did not correlate with estimates of red marrow radiation absorbed dose, total-body radiation absorbed dose, blood effective half-life, or blood AUC. CONCLUSION: Relapsed or refractory NHL in patients with adequate bone marrow reserve and <25% bone marrow involvement by NHL can be treated safely with (90)Y-ibritumomab tiuxetan RIT on the basis of a fixed, weight-adjusted dosing schedule. Dosimetry and pharmacokinetic results do not correlate with toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号