首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses. Under drought stress, the transgenic plants maintained higher relative water content (RWC), net photosynthesis, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than wild-type control plants. These results indicate the high tolerance of the transgenic plants to drought stress compared to the WT. The transgenic tobacco lines accumulated less reactive oxygen species (ROS) and exhibited higher antioxidative enzyme activities compared with wild-type (WT) plants under drought stress, which suggested that the overexpression of AsNF-YC8 improves the antioxidant defense system by regulating the activities of these antioxidant enzymes, which in turn protect transgenic lines against drought stress. These results suggest that AsNF-YC8 plays an important role in tolerance to drought and salt stresses.  相似文献   

2.
Expansins are cell wall-loosening proteins and now widely accepted to associate with the plant resistance against various abiotic stresses. In this study, we cloned an expansin gene of AstEXPA1 from Agrostis stolonifera, a heat-resistant creeping bentgrass cultivar, and transformed it into tobacco plants. Physiological index test showed that the transgenic lines were resistant to various abiotic stresses of drought, heat, cold, and salt in comparison to non-transgenic plants. Comprehensive analysis of four physiological response indices showed that the transgenic plants performed much better resistance to drought, following to heat, cold and salt stress, respectively. Meanwhile soluble sugar content displayed more weight to plant resistance by over-expressing AstEXPA1 gene, followed as proline content, REL, and MDA content. The results here would expand our understanding of the expansin roles and drive better insights into plant molecular breeding against stress.  相似文献   

3.
4.
Drought is one of the major abiotic stresses restricting the yield of wheat (Triticum aestivum L.). Breeding wheat varieties with drought tolerance is an effective and durable way to fight against drought. Here we reported introduction of AtHDG11 into wheat via Agrobacterium-mediated transformation and analyzed the morphological and physiological characteristics of T2 generation transgenic lines under drought stress. With drought treatment for 30 days, transgenic plants showed significantly improved drought tolerance. Compared with controls, the transgenic lines displayed lower stomatal density, lower water loss rate, more proline accumulation and increased activities of catalase and superoxide dismutase. Without irrigation after booting stage, the photosynthetic parameters, such as net photosynthesis rate, water use efficiency and efficiency of excitation energy, were increased in transgenic lines, while transpiration rate was decreased. Moreover, the kernel yield of transgenic lines was also improved under drought condition. Taken together, our data demonstrate that AtHDG11 has great potential in genetic improvement of drought tolerance of wheat.  相似文献   

5.
Cassava (Manihot esculenta) is an important tropical crop with extraordinary tolerance to drought stress but few reports on it. In this study, MeDREB1D was significantly and positively induced by drought stress. Two allelic variants of the gene named MeDREB1D(R-2) and MeDREB1D(Y-3) were identified. Overexpressing MeDREB1D(R-2) and MeDREB1D(Y-3) in Arabidopsis resulted in stronger tolerance to drought and cold stresses. Under drought stress, transgenic plants had more biomass, higher survival rates and less MDA content than wild-type plants. Under cold stress, transgenic plants also had higher survival rates than wild-type plants. To further characterize the molecular function of MeDREB1D, we conducted an RNA-Seq analysis of transgenic and wild-type Arabidopsis plants. The results showed that the Arabidopsis plants overexpressing MeDREB1D led to changes in downstream genes. Several POD genes, which may play a vital role in drought and cold tolerance, were up-regulated in transgenic plants. In brief, these results suggest that MeDREB1D can simultaneously improve plant tolerance to drought and cold stresses.  相似文献   

6.
7.
8.
9.
Olive is one of the most important tree crops in the Mediterranean region, because of its ability to grow and produce acceptable yields under limited water availability. In this study, the drought tolerance of an olive cultivar Canino was compared to the performance of its derived transgenic line expressing osmotin gene from tobacco, obtained by Agrobacterium-mediated transformation of Canino cultivar. Shoot cultures of both wild-type (wt) and transgenic lines were exposed to drought stress over a 28-day period, and their differential responses to in vitro-drought stress were investigated. After exposure to PEG, most of the shoots from wt plants resulted in damage and exhibited decreased levels of chlorophyll, while those of transgenic line did not show injuries and showed a normal growth even when exposed to the highest PEG concentration (4%). After preliminary evaluation we characterized Canino AT17-1, by measuring several physiological parameters, including the activities of the antioxidant enzymes (POD and CAT), and the content of malondialdehyde (MDA). Both the activity of catalase and the proline content were higher in the leaves of the transgenic shoots compared to wt plants. Consequently, it was observed that the transgenic line accumulated less MDA indicating that the presence of the osmotin gene protected the cell membrane from damage by lipid peroxidation. Together, these results could suggest that the transgenic line Canino AT17-1 was more efficient in the activation of defense responses against oxidative stress with respect to the Canino wt. The further finding that the transgenic shoots also showed higher proline accumulation supported the hypothesis that the osmotin gene conferred to transgenic shoots increased tolerance to drought stress compared with the wt.  相似文献   

10.
11.
Proline accumulations in abiotically stressed plants is generally considered to benefit their stress tolerance. The Δ1-Pyrroline-5-carboxylate synthetase (P5CS) gene family, which encodes the rate-limiting enzyme in proline biosynthesis pathway, usually contains two duplicated genes in most plants. However, three P5CS genes including LrP5CS1, LrP5CS2 as well as a third one, LrP5CS3, were isolated from Lilium regale. LrP5CS3 is highly identical to LrP5CS1 in amino acid sequences, indicating they could come from a paralogous duplication. The phylogenetic tree suggested that the duplication of LrP5CS occurred independently after the divergence of Liliales and commelinoids. The expression of LrP5CS1 was strongly induced in leaves and roots both under drought and salinity, while that of LrP5CS3 was upregulated more moderately. LrP5CS2 stayed almost constitutive under stress. LrP5CS1 exhibited the highest activity after expressed in E. coli. Overexpression of LrP5CS genes conferred enhanced osmotic, drought and salt tolerance on transgenic Arabidopsis without negative effects in unstressed condition. Under salt stress, lines LrP5CS2 accumulated fewer proline than others, and lines LrP5CS1 grew better in root elongation. The roots of lines LrP5CS3 grew better than all others under unstressed condition and osmotic stress. Our study suggests that the three LrP5CS genes play distinct roles respectively in proline accumulation and abiotic stress tolerance.  相似文献   

12.
Christolea crassifolia HARDY: gene (CcHRD) belongs to the AP2/ERF-like tanscritpion factor family, and overexpression of HRD gene has been proved to result in improved water use efficiency and enhanced drought resistance in multiple plant species. In the present study, we cloned the CcHRD gene from Christolea crassifolia, which shares 99.1% sequence similarity with the HRD gene from Arabidopsis thaliana. We generated transgenic tomato plants expressing CcHRD gene by agrobacterium-mediated genetic transformation. Our results revealed that the transgenic tomato plants showed a more developed root system and higher fruit yield than the wild-type plants. Furthermore, the leaf relative water content, chlorophyll content and Fv/Fm value in transgenic plants were significantly higher than the wild type, while the relative conductivity and MDA content of transgenic plant leaves were markedly lower than those of wild type under drought stress. We also observed that the major agronomic traits of transgenic tomato plants were improved under natural drought stress compared with those of the wild type. In summary, results in this transgenic study showed that the CcHRD gene could enhance the drought resistance in tomato, and also provided important information for the application of drought-responsive genes in improving crop plant resistance to abiotic stresses.  相似文献   

13.
Heat shock proteins (HSPs) are ubiquitous protective proteins that play crucial roles in plant development and adaptation to stress, and the aim of this study is to characterize the HSP gene in alfalfa. Here we isolated a small heat shock protein gene (MsHSP17.7) from alfalfa by homology-based cloning. MsHSP17.7 contains a 477-bp open reading frame and encodes a protein of 17.70-kDa. The amino acid sequence shares high identity with MtHSP (93.98 %), PsHSP17.1 (83.13 %), GmHSP17.9 (74.10 %) and SlHSP17.6 (79.25 %). Phylogenetic analysis revealed that MsHSP17.7 belongs to the group of cytosolic class II small heat shock proteins (sHSP), and likely localizes to the cytoplasm. Quantitative RT-PCR indicated that MsHSP17.7 was induced by heat shock, high salinity, peroxide and drought stress. Prokaryotic expression indicated that the salt and peroxide tolerance of Escherichia coli was remarkably enhanced. Transgenic Arabidopsis plants overexpressing MsHSP17.7 exhibited increased root length of transgenic Arabidopsis lines under salt stress compared to the wild-type line. The malondialdehyde (MDA) levels in the transgenic lines were significantly lower than in wild-type, although proline levels were similar between transgenic and wild-type lines. MsHSP17.7 was induced by heat shock, high salinity, oxidative stress and drought stress. Overexpression analysis suggests that MsHSP17.7 might play a key role in response to high salinity stress.  相似文献   

14.
15.
A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program.  相似文献   

16.
MiR408 is a conserved miRNA family in plants. Although AtmiR408 is generally regarded as participating in stress responses, it still remains obscure whether OsmiR408 modulates tolerance to environmental stress. In the current study, expression of Pre-OsmiR408 and OsmiR408 was found to be induced by cold stress, but repressed by drought stress in the rice cultivar “Kongyu 131”. By comparing the wild type and OsmiR408 transgenic lines, we found that OsmiR408 overexpression conferred enhanced cold tolerance at both the early seedling stage and the young seedling stage. On the other hand, the OsmiR408 transgenic lines exhibited decreased drought tolerance, which is further verified by greater water loss. We also predicted the putative target genes of OsmiR408 and verified the decreased expression of seven targets in OsmiR408 transgenic lines, including four phytocyanins and three atypical target genes. Among them, Os09g29390, a phytocyanin gene, and Os01g53880, an auxin responsive Aux/IAA gene, were down-regulated by cold treatment, which is opposite to the cold-induced expression of OsmiR408. Taken together, our results suggest opposite roles of OsmiR408 in plant responses to cold and drought stresses.  相似文献   

17.
Histone deacetylation catalyzed by histone deacetylases is an important type of histone modification. Histone deacetylases affect various processes of plant development and involve in responding to hormones and biotic and abiotic stresses. Here, we report a tomato PRD3/HDA1 histone deacetylase gene, SlHDA5, which is expressed ubiquitously in different tissues and development stages. Expression profiles in hormone treatments showed that SlHDA5 was induced by abscisic acid (ABA) and methyl jasmonate (MeJA). Seedlings growth of SlHDA5-RNAi lines were more inhibited on the medium containing salt compared with wild type (WT). Under salt stress, chlorophyll in mature leaves degraded earlier in transgenic leaves than that in WT, and transgenic plants displayed wilting earlier and more severe than WT. After drought treatment, transgenic plants wilted and dehydrated earlier than WT, which was confirmed by lower water and chlorophyll content, and higher malondialdehyde (MDA) content in transgenic plants manifesting that the tolerance of transgenic plants to drought receded. Under the treatment of ABA, root length of transgenic seedlings was more strongly repressed by contrast with WT, suggesting repression of SlHDA5 increased seedling sensibility to ABA. Our study indicated that silencing of SlHDA5 resulted in decreasing tolerance to salt, drought, and ABA.  相似文献   

18.
Herein, we report isolation of the AlTMP2 gene from the halophytic C4 grass Aeluropus littoralis. The subcellular localization suggested that AlTMP2 is a plasma membrane protein. In A. littoralis exposed to salt and osmotic stresses, the AlTMP2 gene was induced early and at a high rate, but was upregulated relatively later in response to abscisic acid and cold treatments. Expression of AlTMP2 in tobacco conferred improved tolerance against salinity, osmotic, H2O2, heat, and freezing stresses at the germination and seedling stages. Under control conditions, no growth or yield penalty were mentioned in transgenic plants due to the constitutive expression of AlTMP2. Interestingly, under greenhouse conditions, the seed yield of transgenic plants was significantly higher than that of non-transgenic (NT) plants grown under salt or drought stress. Furthermore, AlTMP2 plants had less electrolyte leakage, higher membrane stability, and lower Na+ and higher K+ accumulation than NT plants. Finally, six stress-related genes were shown to be deregulated in AlTMP2 plants relative to NT plants under both control and stress conditions. Collectively, these results indicate that AlTMP2 confers abiotic stress tolerance by improving ion homeostasis and membrane integrity, and by deregulating certain stress-related genes.  相似文献   

19.
C-repeat binding factors (CBFs) play a key role in abiotic stresses. However, little is known about CBFs in Populus euphratica. Here, we isolated PeCBF4a, a member of CBF gene family from P. euphratica. Its expression was induced by dehydration, salinity and low temperature. We generated transgenic poplars (Populus tomentosa ‘YiXianCiZhu B385’) overexpressing PeCBF4a (OE-PeCBF4a) under the control of the CaMV 35S promoter or transformed with empty vector. The wild-type (WT) and empty vector lines were used as controls. Under abiotic stresses, the photosynthetic rate (Pn) of 60-day-old OE-PeCBF4a lines increased 34.7–165.7?% and the instantaneous water use efficiency (iWUE) increased 48.9–103.7?% over controls. The maximum quantum efficiency of PSII photochemistry (Fv/Fm) values in PeCBF4a-overexpressing lines did not change significantly and were 2.14–5.89?% higher. The non-photochemical quenching coefficient (NPQ) mean of OE-PeCBF4a lines decreased by 12.02–23.64?% while the photochemical quenching (qP) value was 8.75–22.31?% higher than controls. OE-PeCBF4a lines also displayed higher superoxide dismutase (SOD) activities and markedly lower malondialdehyde (MDA) levels compared to controls. Higher levels of proline and sugars accumulated in transgenic plants. Overexpression of PeCBF4a not only induced strong expression of the stress-responsive downstream target genes of PeCBF4a, PtRCI2A (rare-cold-inducible 2A) and PtDI21 (drought-induced 21), but also caused dwarfed phenotypes. Based on results from P-V curve measurements, the osmotic adjustment capability of OE-PeCBF4a plants was enhanced. These results confirmed that OE-PeCBF4a poplars exhibit greater tolerance to stress, indicating that PeCBF4a plays a positive role in stress tolerance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号