首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The preparation of poly(vinyl alcohol) (PVA)–poly(vinyl acetate) (PVAc) composite porous membrane was investigated by extracting PVAc with solvent from films of PVAc lattices which were obtained by the emulsion polymerization of vinyl acetate (VAc) in the presence of PVA. The formation of the porous membrane depended upon whether or not PVAc in the latex film was easily extracted with solvent. In the case of using hydrogen peroxide (HPO)–tartaric acid (TA) as an initiator, in the film of the latex which was produced from the batch method in which all ingredients of the batch were put into the reaction vessel before starting polymerization, PVAc could be extracted over 90% of total PVAc with common organic solvents. In the film of the latex which was produced from the dropwise addition method of VAc and initiator, the PVAc extraction was about 20-30%. On the other hand, in the case of using ammonium persulfate as an initiator, the desired porous membrane was not obtained. The structure of the porous membrane obtained from the latex of the batch method by using HPO—TA consisted of spherical cells which were made up of PVA and grafted PVAc or insoluble PVAc like microgels, which were not extracted with organic solvent and were connected by small pores. The PVA—PVAc composite porous membrane is permeated by n-hexane with 5.58 × 102 mL/cm2·s at 0.5 kg/cm2, by benzene with only 1.33 × 10?3mL/cm2·s even at 60 kg/cm2.  相似文献   

2.
Vinyl acetate (VAc) was solution‐polymerized at 40°C and 50°C using 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as an initiator and methanol as a solvent, and effects of polymerization temperature and initiator concentration were investigated in terms of conversion of VAc into poly (vinyl acetate) (PVAc), degree of branching (DB) for acetyl group of PVAc, and molecular weights of PVAc and resulting poly(vinyl alcohol) (PVA) obtained by saponifying with sodium hydroxide. Slower polymerization rate by adopting ACVA and lower viscosity by methanol proved to be efficient in obtaining linear high‐molecular‐weight (HMW) PVAc with high conversion and HMW PVA. PVA having maximum number–average degree of polymerization (Pn) of 4300 could be prepared by the saponification of PVAc having maximum Pn of 7900 polymerized using ACVA concentration of 2 × 10?5 mol/mol of VAc at 40°C. Moreover, low DB of below 1 could be obtained in ACVA system, nevertheless of general polymerization temperatures of 40°C and 50°C. This suggests an easy way for producing HMW PVA with high yield by conventional solution polymerization without using special methods such as low‐temperature cooling or irradiation. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 4831–4834, 2006  相似文献   

3.
Poly (vinyl acetate) (PVAc) latexes are economically important products with many desirable features. They are used as adhesives for porous materials in various processing stages of industries. Synthesis parameters have an important role on the physico-chemical properties of PVAc latexes such as: viscosity, average molecular weight, degree of polymerization, and surface morphology. In this work, PVAc was prepared via semicontinous emulsion polymerization (delayed monomer and initiator addition process) in the presence of ammonium persulfate (APS) as conventional anionic initiator, poly (vinyl alcohol) (PVA) as stabilizer, and sodium lauryl sulfate (SLS) as anionic emulsifier. The surface morphology of PVAc microspheres was, examined using a scanning electron microscope (SEM) and atomic force microscope (AFM). It is evident from the SEM photographs that all the particles became microspheres and are uniform in shape. The use of AFM for imaging of polyvinyl acetate confirms a typical sphere polymer. The effect of changes in the different parameters such as concentration of emulsifier, initiator concentration, and presence or absence of buffer on the vinyl acetate (VAc) conversion, the steady state polymerization rate, the viscosity-average molecular weight, and the final latex viscosity of synthesized PVAc were investigated. The effects of anionic emulsifier on the synthesized PVAc are also compared with those obtained by the nonionic emulsifier. The comparison indicated that the VAc monomer conversion and the final latex viscosity of the anionic system were higher than for the nonionic system but the viscosity-average polymer molecular weight of the anionic system was lower than that of the nonionic system. The adhesive strength of the synthesized PVAc latex was examined and the load and deflection data were reported.  相似文献   

4.
以VAE[醋酸乙烯酯(VAc)-乙烯共聚物]为种子乳液、聚乙烯醇(PVA)为保护胶体、叔碳酸乙烯酯(VoeVa10)为VAc的共聚单体、OP-10为乳化剂、己二酰肼(ADH)/双丙酮丙烯酰胺(DAAM)为交联体系和叔丁基过氧化氢/甲醛次硫酸钠为氧化还原型引发剂,采用种子乳液聚合法制备了VAc/VoeVa10/DAAM共聚乳液;然后在反应后期加入后交联剂(ADH),得到改性聚醋酸乙烯酯(PVAc)乳液。结果表明:当w(PVA1788+PVA1799)=3%、m(PVA1788)∶m(PVA1799)=1∶1、m(VoeVa10)∶m(VAc)=(10~15)∶100、w(氧化剂)=0.3%、w(VAE)=10%、w(OP-10)=2%、m(ADH)∶m(DAAM)=(0.5~1.5)∶1.0且w(DAAM)=2%时,相应乳液具有优异的耐水性和稳定性,并且其涂膜柔韧性和粘接性能俱佳。  相似文献   

5.
Poly(vinyl acetate) combs have been prepared via macromolecular design via interchange of xanthate (MADIX)/reversible addition-fragmentation chain-transfer (RAFT) polymerization using xanthate functionalized polymer cores. The comb backbones were prepared using well-defined poly(vinyl alcohol) PVA polymers with a degree of polymerization of 20, 100 and 170, respectively. Functionalization with xanthates via R-group or a Z-group approach resulted in the formation of macromolecular MADIX agents. While Z group designed macromolecular xanthate agents appeared to inhibit the polymerization of vinyl acetate (VAc), R group designed macromolecular xanthate agents achieved to mediate efficiently the bulk polymerization of VAc affording PVAc combs. However, the growth of the combs was accompanied at low conversions by the formation of linear polymer chains as a result of the constant initiation (AIBN) and shoulders, which can be attributed to intermolecular coupling reactions. The proportions of single chains and termination products were observed to increase with the degree of polymerization of the macromolecular MADIX agents broadening the molecular weight distribution. As a result of a stable ester link between the branches and the PVA backbone, the branched PVAc architectures were finally hydrolyzed to afford poly(vinyl alcohol) combs.  相似文献   

6.
To prepare high molecular weight (HMW) poly(vinyl acetate) (PVAc) with high yield and high linearity as a precursor of HMW poly(vinyl alcohol) (PVA), vinyl acetate (VAc) was emulsion polymerized using, azo initiator, 2,2′‐azobis(2‐amidinopropane) dihydrochloride (AAPH). This was compared with the polymerization using potassium peroxodisulfate (KPS) as an initiator at various polymerization conditions. PVA, having a maximum number average degree of polymerization (Pn) of 3500 was obtained by the saponification of PVAc with Pn of 13,000–14,000, degree of branching (DB) for the acetyl group of about 3.4–3.5, and a maximum conversion of VAc into PVAc of 95%, which was polymerized by AAPH. These numerical values were superior compared with 14,500–15,000 of Pn of PVAc, obtained by KPS, and 3100 of maximum Pn of resulting PVA, DB of about 3.7–3.8, and maximum conversion of 90%. From the foregoing experimental results, we found that AAPH was a more efficient initiator than KPS in increasing both conversion of PVAc and molecular weight of PVA. In addition, PVAc microspheres, obtained by these emulsion polymerizations, can be converted to PVA / PVAc shell / core microspheres through a series of surface‐saponifications, maintaining their spherical morphology. Various surface morphologies, such as flat or wrinkled and swellable or nonswellable ones formed by the various molecular parameters and saponification conditions, were examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2356–2362, 2004  相似文献   

7.
以聚乙烯醇(PVA)为保护胶体、过硫酸铵(APS)为引发剂、醋酸乙烯(VAc)和改性单体(Veova)为主要原料,采用种子乳液聚合法制备VAc/Veova乳液;然后以此为母液,采用喷雾干燥法制备可再分散性乳胶粉。结果表明:当保护胶体选择低聚合度不完全皂化的PVA、采用连续滴加法加入引发剂、采用前混工艺加入抗结块剂、干燥塔进口温度为150~200℃和出口温度为80~90℃时,VAc/Veova型可再分散性乳胶粉的主要应用性能满足JG 149—2003标准,并且接近甚至超过国内外同类产品。  相似文献   

8.
Vinyl acetate (VAc) was solution‐polymerized in tertiary butyl alcohol (TBA) and in dimethyl sulfoxide (DMSO) having low chain transfer constant at 30, 40, and 50°C, using a low temperature initiator, 2,2′‐azobis(2,4‐dimethylvaleronitrile) (ADMVN). The effects of polymerization temperature and initiator concentration were investigated in terms of polymerization behavior and molecular structures of poly(vinyl acetate) (PVAc) and corresponding poly(vinyl alcohol) (PVA) obtained by saponification with sodium hydroxide. The polymerization rates of VAc in TBA and in DMSO were proportional to the 0.49 and 0.72 powers of ADMVN concentration, respectively. For the same polymerization conditions, TBA was absolutely superior to DMSO in increasing the molecular weight of PVA. In contrast, TBA was inferior to DMSO in causing conversion to polymer, indicating that the initiation rate of VAc in TBA was lower than that in DMSO. These effects could be explained by a kinetic order of ADMVN concentration calculated using initial rate method and by an activation energy difference of polymerization obtained from the Arrhenius plot. Low‐temperature solution polymerization of VAc in TBA or DMSO by adopting ADMVN proved successful in obtaining PVA of high molecular weight (number–average degree of polymerization (Pn): 4100–6100) and of high yield (ultimate conversion of VAc into PVAc: 55–80%) with diminishing heat generated during polymerization. In the case of bulk polymerization of VAc at the same conditions, maximum Pn and conversion of 5200–6200 and 20–30% was obtained, respectively. The Pn and lightness were higher, and the degree of branching was lower with PVA prepared from PVAc polymerized at lower temperatures in TBA. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1003–1012, 2001  相似文献   

9.
High-molecular weight (HMW) poly(vinyl alcohol) (PVA) was prepared via an emulsifier-free emulsion polymerization of vinyl acetate (VAc) using a redox initiation system in low temperatures, and the subsequent saponification with potassium hydroxide in methanol. The effect of the polymerization conditions on the conversion, molecular weight, and branching degree was investigated. PVA with maximum viscosity-average degree of polymerization (DP) of 8270 could be prepared by saponification of poly(vinyl acetate) (PVAc), with DP of 10,660 obtained at temperature of 10°C, monomer concentration of 30%, potassium persulfate molar ratio to monomer of 1/2000, agitation speed of 160 rpm. The conversion was above 90%. From the emulsifier-free emulsion polymerization of VAc in low temperature, PVAc with HMW and high linearity was effectively prepared, which might be useful for the preparation of high-strength and high-modulus PVA fiber. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Summary A simple method of related sensitivity range to predict thermodynamic equilibrium morphology of a core-shell latex particle (J Appl Polym Sci. 2004, 92, 3144), is recently explored. The article proposed that it is necessary to classify core-shell latex systems as sensitivity and no-sensitivity by their equilibrium morphology sensitivity to initiator and emulsifier. As for the sensitivity system, the final morphology may change by adjusting initiator and emulsifier, whereas, for the no-sensitivity system, it is hard to change its final morphology in this way. Equilibrium morphologies in system poly(vinyl acetate) (PVAc)/polystyrene (PSt) and poly(butyl acrylate) (PBA)/ PSt composite latexes particles were observed by changing initiator. Composite latexes of the two systems were synthesized by two-stage semi-continuous emulsion polymerization. The types or/and concentration of initiator changed in two stages in which the oil-soluble initiator 2,2-azobis(isobutyronitrile) (AIBN) and the water-soluble initiator potassium persulfate (KPS) were used respectively, the concentration of which was 0.5% or 2% based on the weight of monomer. The results showed that the two systems had different characteristics. At different experiment conditions designed, the same equilibrium morphologies with PSt as core and PVAc as shell were obtained in system PVAc/PSt, whereas, three different equilibrium morphologies, core-shell, inverted core-shell and hemisphere, were obtained in system PBA/PSt. The equilibrium morphology in system PVAc/PSt is no-sensitive to initiator, and the equilibrium morphology in system PBA/PSt is sensitive to initiator.  相似文献   

11.
单组分聚醋酸乙烯D3级木工胶的研究   总被引:1,自引:1,他引:0  
以乙二醛改性PVA(聚乙烯醇)为保护胶体、VAE(乙烯-醋酸乙烯共聚物)乳液为种子乳液和VoeVa10(叔碳酸乙烯酯)为共聚单体,采用种子乳液聚合法和酮肼(DAAM/ADH)交联体系合成了改性PVAc(聚醋酸乙烯)胶粘剂。研究结果表明:当乙二醛改性PVA的缩醛度为15%、m(VoeVa10)∶m(VAc)=10∶100、w(VAE)=10%(相对于乳液总质量而言)和m(ADH)∶m(DAAM)=(0.5~1.5)∶1时,制成的单组分环保型改性PVAc乳液胶粘剂具有良好的耐水性和粘接强度,完全满足欧洲DIN EN 204—1991 D3级木工胶的标准要求。  相似文献   

12.
《国际聚合物材料杂志》2012,61(1-2):181-194
Abstract

Vinyl acetate (VAc) was bulk-polymerized at 30, 40 and 50°C using a low temperature initiator, 2,2′-azobis(2,4-dimethylvaleronitrile) (ADMVN), and effects of polymerization temperature and initiator concentration were investigated in terms of polymerization behavior and molecular structures of poly(vinyl acetate) (PVAc) and corresponding poly(vinyl alcohol) (PVA) obtained by saponifying it with sodium hydroxide. Low polymerization temperature and low conversion by adopting ADMVN proved to be successful in obtaining PVA of high molecular weight. PVAc having number-average degree of polymerization (Pn ) of 6,800–10,100 was obtained, whose degree of branching for acetyl group of 0.6–0.7 at 30°C, 0.8–1.1 at 40°C, and 1.0–1.9 at 50°C at conversion of below 40%. Saponifying so prepared PVAc yielded PVA having Pn of 3,100–6,200, and syndiotactic diad (S-diad) content of 51–53%. The whiteness, S-diad content, and crystal melting temperature were higher with PVA prepared from PVAc polymerized at lower temperatures.  相似文献   

13.
Transarterial vascular embolization and chemoembolization has become common medical procedures, where partially hydrolyzed poly(vinyl alcohol) (PVA) beads remains as one of the most used embolic agent materials. Although synthetic, PVA cannot be synthesized by direct polymerization and must be obtained by chemical modification of another polymer, usually poly(vinyl acetate) (PVAc). The aim of the present work is to synthesize spherical core‐shell PVAc/PVA particles and study the morphological and molecular modifications during shell formation. The polymer particles where produced in two stages, where first the PVAc core was obtained by suspension polymerization of vinyl acetate (VAc) and then the PVA shell synthesized through hydrolysis. Spherical PVAc particles were successfully produced and isolated using an optimized suspension polymerization process. During the shell formation, it was shown that none of the conditions used affected the overall morphology of the particles although changes in the final size distribution could be observed. However, it was possible to identify the process variables and reaction condition that affect the molecular weight averages and polydispersities of the final copolymer. POLYM. ENG. SCI., 55:2237–2244, 2015. © 2015 Society of Plastics Engineers  相似文献   

14.
以苯乙烯(St)与甲基丙烯酰氧基丙基三乙氧基硅烷(TEPM)的共聚物P(St-TEPM)为助稳定剂,用于不同亲水性单体的细乳液聚合.考察了P(St-TEPM)助稳定剂在不同亲水性单体(St、甲基丙烯酸甲酯MMA、醋酸乙烯酯VAc)的细乳液聚合过程中对单体转化率、聚合物粒子粒径的影响及成核机理.结果表明,P(St-TEPM)单独作为助稳定剂用于不同单体(St、MMA、VAc)的细乳液聚合,亲油性较好的St和亲水性较好的VAc的聚合转化率分别为90.6%和63.8%,聚合物粒子的最终数目和单体液滴的起始数目(N pf/Nmi )分别为1.06和0.10.通过以上分析认为P(St-TEPM)可以作为细乳液聚合的助稳定剂使用,亲油性单体St聚合机理以单体液滴成核为主体.  相似文献   

15.
以过硫酸钠作为引发剂,以甲基丙烯酸甲酯(MMA)、叔碳酸乙烯酯(VeoVa10)和丙烯酸丁酯(BA)作为醋酸乙烯酯(VAc)的共聚改性单体,采用先预乳化后半连续滴加法制备改性聚醋酸乙烯酯(PVAc)乳液.探讨了搅拌速率、共聚单体配比、聚乙烯醇(PVA)和引发剂含量等对改性PVAc乳液性能的影响.结果表明:当m(VAc ...  相似文献   

16.
The styrene–EPDM–vinylacetate (SEV) graft polymer, which linked respectively the styrene (St) unit and vinylacetate the (VAc) unit to the ethylene–propylene–diene terpolymer (EPDM) backbone was synthesized by two‐step graft polymerizations: First the graft polymerization of VAc onto EPDM was carried out, and then St was added successively in the prepolymerized solution and further polymerized for a given period to obtain SEV. The effects of concentration of EPDM and an initiator, mole ratio of VAc to St, polymerization time, temperature, and solvent were examined on the graft polymerizations. The synthesized graft polymers (SEVs) that have different contents of St or VAc were identified by Fourier transform IR spectrum. The highest graft ratio has been obtained by 10 wt % of EPDM, 1.0 mole ratio of VAc to St, and 1.0 wt % of BPO in toluene for 48 h at 70°C. The glass transition temperature of SEV is lower than that of poly(vinyl acetate) (PVAc) and polystyrene (PS). The thermal stability of SEV is higher than that of PVAc, PS, and the acrylonitrile–butadiene–styrene (ABS) resin. The tensile strength of SEV was improved as compared with that of EPDM. The light resistance and weatherability of SEV were better than those of ABS. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2296–2304, 2000  相似文献   

17.
Poly(vinyl alcohol) (PVAc) composite porous membrane has been prepared from PVAc latex film by extraction with acetone. The PVAc latex was prepared by emulsion polymerization of vinyl acetate in the presence of PVA, employing the hydrogen peroxide–tartaric acid systemm as an initiator. The extraction degree of PVAc could be controlled in a wide range by changing the addition method of the initiator, and, acoordingly, PVA–PVAc omposite porous membranes which had variosu void volumes were obtained. The maximum void volume attained was ca. 90%. Permation characteristics of organic solvents wre investigated on the membranes whose extraction degrees were 95.6% and 80.7%. Thge feeds were benzene, n-hexane, cyclohexane, and their mixtures. neither swelling nor shrinkage in tje appearance size of the while benzene hardly permeated even at 20 kg/cm2. The grafted PVAc in the mebrane was removed or converted into grafted PVA by treatment with sodium methylate, and then the depression of benzene permeation was lost. The grafted PVAc was suggested to be localizd on the cell wall and was found to function as a valve which closes with nenzene or a good solvent for PVAc and opens with n-haxane or a poor solvent for PVAc.  相似文献   

18.
采用核/壳乳液聚合工艺,以醋酸乙烯(VAc)为主单体、甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)为改性单体、丙烯酸(AA)和N-羟甲基丙烯酰胺(NMA)为交联单体,合成出一种玻璃纤维定型用的改性聚醋酸乙烯(PVAc)粘合剂。研究结果表明:当聚合温度为75℃、m(AA)∶m(VAc)∶m(MMA)∶m(NMA)∶m(BA)=1∶35∶7∶1.5∶12时,改性PVAc乳液既具有优良的粘接性能,又具有很强的粘接性、耐水性、耐碱性和弹性,并可赋予玻璃纤维良好的定型防腐功效。  相似文献   

19.
改性聚醋酸乙烯酯乳液的合成及性能研究   总被引:4,自引:4,他引:0  
聚醋酸乙烯酯(PVAc)作为常用的环保、安全型胶粘剂之一,具有许多优异的性能,但由于耐水性较差而限制了其使用范围。以含功能基团的有机硅单体和第三单体(丙烯酰胺)作为PVAc的改性剂,合成了一种性能优异的改性PVAc乳液胶粘剂;探讨了聚乙烯醇(PVA)类型、有机硅及第三单体用量对改性PVAc乳液性能的影响。研究结果表明,共聚反应的优选条件为w(引发剂)=0.45%(相对于总体系而言),w(有机硅)=2%~4%(相对于VAc单体而言),m(PVA-1799)∶m(PVA-1788)=1∶1;另外,通过调节m(PVA-1799)∶m(PVA-1788)比例及丙烯酰胺的用量,可以改变改性PVAc乳液的黏度。  相似文献   

20.
张奎  屈龙  张红  朱勇  王平华 《粘接》2009,30(11):51-54
以醋酸乙烯酯(VAc)为核单体,丙烯酸丁酯(BA)为壳单体,二甲基丙烯酸乙二醇酯(EGDMA)为交联剂,采用分阶段饥饿态加料方式和半连续乳液聚合方法合成了具有硬核软壳结构的聚(醋酸乙烯酯/丙烯酸丁酯)。采用OP-10和十二烷基硫酸钠(SDS)质量比为2:1的复合乳化剂,用量为4%左右时乳液稳定;壳单体的滴加速度在5~6g/h时,聚合体系稳定,且转化率高。用FT—IR分析了聚合物的结构;并用透射电镜表征了乳胶粒结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号