共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
Sexual reproduction was induced in the dinoflagellate Peridinium willei Huitfeld-Kass when exponentially growing cells were inoculated into nitrogen deficient medium. Small, naked vegetative cells produced by division of thecate cells acted as gametes. The zygote remained motile 13–14 days, during which time it enlarged and the theca formed became warty. Fourteen to 15 days following plasmogamy the zygote was nonmotile with the protoplast contracted. A large red oil droplet appeared and the wall thickened, becoming chitinized. Hypnozygotes with 4 nuclei were observed 7–8 wk following formation. Meiosis was inferred. The hypnozygote germinated, within 8 wk producing one post-zygotic cell retaining the red oil droplet. This cell divided within 24 h into 2 daughter cells each with a prominent red oil droplet. These daughter cells divided after 2 to 3 days into ordinary vegetative cells. Attempts to induce sexual reproduction by inoculation of cells into media deficient in a number of basic elements were unsuccessful. 相似文献
3.
jvind Moestrup 《Journal of phycology》1991,27(1):119-133
The tiny jumping flagellate originally described as Pedinomonas mikron Throndsen was isolated into pure culture from Australian waters and its ultrastructure critically examined. Pedinomonas mikron differs in behavior and in features of the flagellar apparatus from P. minor, the type species from freshwater, and is referred to the new genus Resultor. The two genera are closely related and form the new class Pedinophyceae, which is characterized by features of the flagellar apparatus, mitosis, and cytokinesis. The flagella show the 11/5 orientation otherwise characteristic of Ulvophyceae and Pleurastrophyceae, but they are arranged end to end as in the Chlorophyceae. The flagellar root system is asymmetric and includes a rhizoplast that emerges from the base of one flagellum but subsequently associates with a microtubular root from the second basal body. Mitosis studied previously by Pickett-Heaps and Ott in Pedinomonas is closed, unlike in other green algae, and the spindle is persistent. No phycoplast or phragmoplast is formed during cytokinesis. The eyespot of the Pedinophyceae is located at the opposite end of the cell from the flagella and adjacent to the pyrenoid, as in the most primitive members of the Prasinophyceae. Members of the Pedinophyceae lack prasinoxanthin and Mg 2,4D, characteristic of certain other primitive green algae. The primitive green algae include the classes Prasinophyceae and Pedinophyceae. Micromonadophyceae Mattox et Stewart is considered a synonym of Prasinophyceae. Two new orders are established, Pedinomonadales, containing all known members of the Pedinophyceae, and Scourfieldiales, with the single family Scourfieldiaceae fam. nov. and the single genus Scourfieldia. 相似文献
4.
The gonyaulacoid dinofiagellate Alexandrium satoanum Yuki et Fukuyo sp. nov. is described from Matoya Bay, Pacific coast of central Japan. The species is distinctive in its conical epitheca with almost straight sides and dorsal concavity of the hypotheca. The plate formula is Po, pc, 4′, 6″, 6c, 10s, 5″″, and 2″″, including two accessory plates inside the sulcus. The apical pore plate is triangular and possesses an anterior attachment pore at the right margin. The first apical plate does not make contact with the apical pore plate and lacks a ventral pore. A posterior attachment pore lies at the center of the posterior sulcal plate. In Matoya Bay, vegetative cells occur as solitary cells or sometimes in pairs during late spring and early summer in low concentrations. In connection with this study, the following new combination is proposed: Alexandrium pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo comb. nov. 相似文献
5.
Electron microscope investigations of the siliceous frustule show that the diatom described by Hustedt as Stephanodiscus subsalsus (A. Cleve) Hust. is not Skeletonema subsalsum (A. Cleve) Bethge (Melosira subsalsa A. Cleve) but is Microsiphona potamos Weber. This species is so similar to Skeletonema costatum (Grev.) Cleve and Skeletonema subsalsum that the combination Skeletonema potamos (Weber) Hasle is suggested. Present records classify Skeletonema potamos as a freshwater species of lakes and rivers. In Sandusky Bay, Lake Erie (U.S.A.) and in River Wümme, a tributary of the River Weser (Germany) it grows with Skeletonema subsalsum. In nature, and when grown in cultures at a salinity of 0%, the processes are extremely short; when grown at salinities of 2% or more, the processes are much longer. 相似文献
6.
Chrysolepidomonas gen. nov. is described for single-celled monads with two flagella, a single chloroplast, and distinctive canistrate and dendritic scales. The type species, Chrysolepidomonas dendrolepidota sp. nov., is described for the first time. The canistrate scales bear eight “bumps” on the top surface, and the dendriticscales have a tapered base with a quatrifid tip. These organic scales are formed in the Golgi apparatus and storred in a scale reservoir. The scale reservoir is bounded on two sides by the R1 and R2 in microtubular roots of the basal apparatus. The cyst (=stomatocyst, statospore) forms endogenously by means of a silica deposition vesicle. The outer cyst surface is smooth, and the pore region is unornamented. Two other organisms bearing canistrate and dendritic scales, previously assigned to the genus Sphaleromants, are transferred to the genus Chrysolepidomonas. They are C.angalica sp. nov. and C. marine(Pienaar) comb. nov. The distinguishing features of Chrysolepidomonas and Sphaleromantis are discussed. A new family, Chrysolepidomonadceae fam. noc., is described for flagellates covered with organic scales. 相似文献
7.
A new species of the dinoflagellate genus Cachonina, C. illdefina sp. nov., was isolated from a red tide off El Capitan State Park, Santa Barbara County, California, in October 1973. The organism is light yellowgreen in color with deeply incised girdle and sulcal grooves. Electron microscopy of the organism, revealed a typical dinokaryotic nucleus. The chloroplasts of the organism are connected, and often contain microtubule-like elements, 25 nm diam. The pyrenoids are characterized as excluding chloroplast thylakoids and ribosomes, although containing an amorphous matrix and numerous tubular invaginations from the cytoplasm. The pyrenoids become detached from the chloroplasts and degenerate into small vesicles. C. illdefina is not bioluminescent. 相似文献
8.
Cyst formation in Ceratium hirundinella (O. F. Müll.) Bergh was studied by light and electron microscopy, using material from several lakes and reservoirs and also laboratory cultures. Cells preparing to encyst build up large quantities of starch and lipid and at the same time reduce their other cell components. The cyst is released from the theca as a naked cell bounded by a double membrane. The most commonly found cyst deposits a layer of electron-dense granules containing silicon on the outer membrane and lays down a cellulose-like material between the two membranes. Cysts without the electron-dense granules are commonly formed in cultures but rarely found in lakes. These cysts appear less resistant to decay and do not show the reorganization of cell contents for dormancy. It is suggested that C. hirundinella has both a resting cyst, forming part of the life cycle, and a temporary cyst stage. 相似文献
9.
Kalle Olli 《Journal of phycology》1996,32(4):535-542
Resting cyst formation of Eutreptiella gymnastica Throndsen was observed during a mesocosm experiment, where nutrient enrichment had induced almost a unialgal bloom. Cells and resting cysts of E. gymnastica were examined in scanning (SEM) and transmission electron microscopy (TEM) and light microscopy. Mature cysts were spherical, with a smooth thick mucilaginous cover that appeared layered when observed with the TEM. Intermediate forms were spherical and lacking flagella and a mucilaginous cover; the euglenoid pellicular striation and canal opening were easily visible. The volume of these intermediate spherical cells and mature cysts was estimated to have increased threefold compared to flagellated cells and contained many paramylon grains. When the cells were grazed by zooplankton, the paramylon grains passed the gut intact and were packed into fecal pellets. Intact undigested paramylon grains were observed in SEM after the breaking up of the pellets. 相似文献
10.
Giuseppe D'Onofrio Donato Marino Luigi Bianco Elisabetta Busico Marina Montresor 《Journal of phycology》1999,35(5):1063-1078
11.
Beatrice M. Sweeney 《Journal of phycology》1976,12(4):460-464
The small green flagellate symbiotic in the Noctiluca miliaris Suriray from Southeast Asia has been examined by light and electron microscopy. The flagellate is very similar to Pedinomonas minor Korschikoff. The deeper flagellar depression and the habitat distinguish this species of Pedinomonas from P. minor. It is not a euglenoid as originally proposed, since it contains starch. Characters distinguishing it from Micromonas are described. The new combination Pedinomonas noctilucae (Subrahmanyan) comb, nov. is proposed for this flagellate. 相似文献
12.
The development of two red algal parasites was examined in laboratory culture. The red algal parasite Bostrychiocolax australis gen. et sp. nov., from Australia, originally misidentified as Dawsoniocolax bostrychiae (Joly et Yamaguishi-Tomita) Joly et Yamaguishi-Tomita, completes its life history in 6 weeks on its host Bostrychia radicans (Montagne) Montagne. Initially the spores divide to form a small lenticular cell, and then a germ tube grows from the opposite pole. Upon contact with the host cuticle, the germ tube penetrates the host cell wall. The tip of the germ tube expands, and the spore cytoplasm moves into this expanded tip. The expanded germ tube tip becomes the first endophytic cell from which a parasite cell is cut off that fuses with a host tier cell. The nuclei of this infected host cell enlarge. As parasite development continues, other host-parasite cell fusions are formed, transferring more parasite nuclei into host cells. The erumpent colorless multicellular parasite develops externally on the host, and reproductive structures are visible within 2 weeks. Tetrasporangia are superficial and cruciately or tetra-hedrally divided. Spermatia are formed in clusters. The carpogonial branches are four-celled, and the carpogonium fuses directly with the auxiliary (support) cell. The mature carposporophyte has a large central fusion cell and sympodially branched gonimoblast filaments. Early stages of development differ markedly in Dawsoniocolax bostrychiae from Brazil. Upon contact with the host, the spore undergoes a nearly equal division, and a germ tube elongates from the more basal of the two spore cells, penetrates the host cell wall, and fuses with a host tier cell. Subsequent development involves enlargement of the original spore body and division to form a multicellular cushion, from which descending rhizoidal filaments form that fuse with underlying host cells. This radically different development is in marked contrast to the final reproductive morphology, which is similar to B. australis and has lead to taxonomic confusion between these two entities. The different spore germination patterns and early germ-ling development of B. australis and D. bostrychiae warrant the formation of a new genus for the Australian parasite. 相似文献
13.
Two new propagule-farming red algae from southern Australia, Deucalion levringii (Lindauer) gen. et comb. nov. and Anisoschizus propaguli gen. et sp. nov., are described and defined largely on their development in laboratory culture. Deucalion is included in the tribe Compsothamnieae on the basis of its subapical procarp and alternate distichous branching. It differs from the other genera included in that tribe in that it produces 3-celled propagules, polysporangia, a subapical cell of the fertile axis which bears 3 pericentral cells, and an apparently post-fertilization involucre which develops from the hypogenous and sub-hypogenous cells of the fertile axis. Its gametophyte morphology has been elucidated in culture, as only sporophytes are known from the field. Gametophytes do not appear to produce propagules. Anisoschizus is provisionally included in the tribe Spermothamnieae on the basis of its subdichotomous branching, possession of a prostrate system and the production of polysporangia. It differs from the other genera of the tribe in the production of 2-celled propagules. Observations on the germination of the “monosporangia” of Mazoyerella arachnoidea and Monosporus spp. indicate that they are analagous to the propagules of Deucalion and Anisoschizus. The nature of these propagules and their role in recycling the parent plant are discussed and contrasted with true monosporangia. It is recommended that Monosporus be maintained as a form genus containing representatives from more than one tribe, as exemplified by plants from Lord Howe I. provisionally identified as M. indicus Boergesen which have both prostrate and erect, as opposed to only erect, axes. 相似文献
14.
Joseph L. Scott Sharon T. Broadwater Bill D. Saunders Jewel P. Thomas Paul W. Gabrielson 《Journal of phycology》1992,28(5):649-660
This study suggests that the genus Rhodella be restricted to that set of features currently observed only in Rhodella maculata Evans and Rhodella violacea (Korn-mann) Wehrmeyer, that a new genus Dixoniella be established to accommodate the unicellular red alga, Rhodella grisea (Geitler) Fresnel, Billard, Hindák et Pekár-ková, and that Rhodella cyanea Billard et Fresnel be further studied for probable reclassification. These conclusions are based on ultrastructural comparisons of Dixoniella grisea with published information on the genus Rhodella. The presence of thylakoids in the pyrenoid, a peripheral encircling thylakoid in the chloroplast, a dictyosome/nuclear envelope association, and the lack of a specialized pyrenoid/nucleus association in D. grisea separate this alga from the genus Rhodella. Cell division in D. grisea is not demonstrably different from that in Rhodella, although the unusually well-defined material of the presumptive microtubule organizing center (MTOC) made it possible to follow the development and behavior of the MTOC to a greater degree than in previously studied red algal cells. The surprising amount of conformity in cell division characters between D. grisea and the genus Rhodella prompted a comparison of cell division characteristics in all red algal unicells studied to date. All unicells show a remarkable degree of similarity except for differences in interzonal spindle length, dissimilarities in size of the nucleus-associated organelle (NAO), and the unusual NAO of Porphyridium purpureum (Bory) Drew et Ross. 相似文献
15.
The composition and metabolic activity of cysts of the marine dinoflagellate Scrippsiella trochoidea (Stein) Loeblich were examined during dormancy, quiescence, and germination. On a per cell basis, newly formed cysts contained an order of magnitude more carbohydrate but significantly less protein and chlorophyll a than did exponentially growing vegetative cells. Loss of lipid and carbohydrate from cysts during the initial dormancy period reflected a respiration rate estimated to be 10% of the respiratory activity in vegetative cells. Among older, quiescent cysts the calculated respiration rate decreased further to approximately 1.5% of the vegetative rate and appeared to proceed largely at the expense of carbohydrate reserves. These estimated rates of respiration were in good agreement with direct measurements of cyst oxygen consumption. The transfer of quiescent cysts to conditions permissive for germination resulted in a rapid increase in respiration rate, as evidenced by carbohydrate loss and O2 consumption. The increased respiratory activity was followed by an increase in protein content and, later, by an increase in chlorophyll a content and photosynthetic capacity. Just prior to germination the P/R ratio became greater than 1, and the estimated chlorophyll-specific photosynthetic activity reached 75% of the rate in vegetative cells. Complete restoration of photosynthetic and respiratory capacity apparently was not achieved until after excystment. These data confirm the common assumption that dinoflagellate cysts represent true “resting” cells, containing extensive energy reserves and displaying greatly reduced metabolic activity. 相似文献
16.
The effects of aging, temperature, and growth medium on germination in culture-produced resting cysts of the marine dinoflagellate Scrippsiella trochoidea (Stein) Loeblich ore examined. Cysts undergo a mandatory period of dormancy lasting approximately 25 days, during which germination does not occur. The duration of this period is not affected by temperature. Once the dormancy period is completed, germination is regulated by external factors. Cysts germinate optimally in nutrient replete medium at temperatures greater than approximately 14° C. At lower temperatures or in nutrient-depleted media germination rate is dramatically slowed, although the final germination frequency appears unchanged. The large Q10 of this temperature effect (ca. 11) suggests that the reduction in germination rate at lower temperatures is not merely the reflection of generally reduced metabolic rates, but rather the result of a temperature response specific to germination. At the highest temperatures tested (22–25° C), germination rate remains maximal although vegetative growth is greatly reduced. A shift in temperature or nutrient conditions, per se, is not necessary for germination. The relatively short dormancy period combined with the absence of a requirement for a dramatic shift in environmental conditions could facilitate rapid cycling between resting and vegetative stages in natural S. trochoidea populations. At the same time, the dramatic reduction in germination rate at low temperatures would permit cysts of this species to serve as overwintering cells as well. 相似文献
17.
Vegetative cells and zoospores of Hormotilopsis gelatinosa Trainor & Bold, H. tetravacuolaris Arce & Bold, Planophila terrestris Groover & Hofstetter, and Phyllogloea fimbriata (Korchikov) Silva were examined by transmission electron microscopy. All cells had pyrenoids traversed by cytoplasmic channels. Zoospores were quadriflagellate and had essentially cruciate flagellar apparatuses. Scales were present on free-swimming zoospores. These features are essentially identical to those of Chaetopeltis sp. and are dissimilar to those of other described green algae. The new order Chaetopeltidales is created to accommodate the genera Chaetopeltis, Hormotilopsis, Planophila sensu Groover & Hofstetter, Phyllogloea, Dicranochaete, and Schizochlamys, organisms previously scattered among the orders Tetrasporales, Chloro-coccales, Chlorosarcinales, and Chaetophorales. Members of the order are closely related to the ancestral chlorophycean flagellate genus Hafniomonas, may be ancestral with respect to other Chlorophyceae, and may also be closely related to the ulvophycean order Ulotrichales. 相似文献
18.
The ultrastructure of Pyramimonas pseudoparkeae sp. nov., a member of the class Prasinophyceae occurring in tidal pools along the east, south and west coast of South Africa, is described. The cell surface is covered by three distinctive body scales whilst the flagellar surfaces possess four types of scales. The structure of these scales is described. P. pseudoparkeae resembles Pyramimonas parkeae Norris and Pearson but differs in the structure of the type 2 body scale. The symmetry and ultrastructure of the cell are described with special attention given to the flagellar apparatus. Preliminary information on the life cycle of this species is presented. This new species is compared with other closely related members of the genus Pyramimonas. 相似文献
19.
Dicroglossum gen. nov. (Delesseriaceae, Ceramiales) is a monotypic genus based on Delesseria crispatula, a species originally described by Harvey for plants collected from southwestern Western Australia. Distinctive features of the new genus include exogenous indeterminate branches; growth by means of a single transversely dividing, apical cell; absence of intercalary divisions in the primary, secondary, and tertiary cell rows; lateral pericentral cells not transversely divided; not all cells of the secondary cell rows producing tertiary cells rows; all tertiary initials reaching the thallus margin; midrib present but lateral nerves absent; determinate lateral bladelets arising endogenously; blades monostromatic, except, at the midrib; carpogonial branches restricted to primary cell rows, on both surfaces of unmodified blades; procarps produced on both blade surfaces, each procarp consisting of a supporting cell that bears two four-celled carpogonial branches and one sterile-cell group of three to four cells; and tetrasporangia borne in two layers, separated by a central row of sterile cells. The combination of exogenous indeterminate branching and bicarpogonial procarps is considered to warrant the recognition of a new tribe, the Dicroglosseae, within the subfamily Delesserioideae. 相似文献
20.
Amphidinium cryophilum sp. nov. was found in the fall of 1979 in a small pond near Madison, Wisconsin. During the ensuing winter, it became the dominant phytoplankter. Cell numbers remained high despite a thick layer of ice and snow. After the ice melted in the spring the organism disappeared from plankton samples. A successful culture of A. cryophilum was established only when isolates were incubated at 5–7° C. It is compared with two morphologically similar species, A. amphidinioides (Geitler) Schiller and Gymnodinium inversum Nygaard. Amphidinium cryophilum is distinguished from the former by its pigmentation (golden-yellow vs. blue-green), the location of the cingulum, and its lack of an eyespot. It differs from the latter in cell shape, the route of the sulcus and position of the nucleus. 相似文献