首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cretaceous ophiolites and ophiolitic fragments occur in the Samar and Leyte islands in eastern central Philippines. The Samar Ophiolite is a complete crust–mantle sequence exposed in southern Samar, whereas the Tacloban and Malitbog ophiolite complexes are, respectively, located in the northeastern and southwestern portions of the nearby Leyte island. Despite the close proximity of these islands, the genetic relationship of these ophiolites and ophiolitic complexes, if any, remains to be elucidated. We present here new petrographic and geochemical data on the harzburgites and dunites of the ultramafic section of the Samar Ophiolite. These mantle peridotites are highly depleted residues which have low modal pyroxene content, high spinel Cr# (=0.62–0.79), and slightly enriched light rare earth element abundance with depletion in Zr and Ti. Such characteristics are typical of supra-subduction zone peridotites and strongly contrast with the abyssal signatures of the Tacloban and Malitbog ophiolite complexes. The absence of a structure between these adjacent ophiolite fragments initially hints that they form a single oceanic crust. However, with our new results, we suggest other possible mechanisms that could explain the relationship of these ophiolites.  相似文献   

2.
Results from the first detailed radiolarian biostratigraphic study conducted in Luzon are reported. The data were obtained from cherts associated with the Casiguran Ophiolite, a dismembered ophiolite mass consisting of serpentinized peridotites, gabbros, dolerite dikes and pillow basalts exposed along the eastern coast of the Northern Sierra Madre, Luzon, Philippines. Cherts and limestone interbeds conformably overlie the ophiolite. The radiolarian assemblages from the cherts constrain the stratigraphic range of the cherts to the Lower Cretaceous (upper Barremian–lower Aptian to Albian). This new biostratigraphic result is in contrast with the Upper Cretaceous stratigraphic range previously reported in the region.Radiolarian biostratigraphic results from the Casiguran Ophiolite provide additional evidence for the existence of Mesozoic oceanic substratum upon which Luzon and neighboring regions within the Philippine archipelago were likely built. Interestingly, the result closely resembles those reported for the ophiolite in southeastern Luzon as well as the oceanic crust of the Huatung Basin situated east of Taiwan and the ophiolites in eastern Indonesia. In light of this, along with previously gathered geochemical data from the ophiolites, a common provenance is being looked into for these crust–upper mantle sequences in the western Pacific region.  相似文献   

3.
A review of the gold-copper, volcanogenic massive sulfide and ultramafic-hosted (i.e., chromitite, nickel sulfide, platinum-group minerals) deposits in the Philippines is presented. It is critical that a thorough understanding of the spatial and temporal relationship among magmatism, structures and mineralization must be gained if the correct evaluation of the economic potential of a particular deposit is to be done. Structural features conducive to precious and base metal mineralizations are associated with shear zones, extensional jogs and collision zones. In Northern Luzon, alkali and adakitic magmatism are considered good markers for gold-copper mineralization. Volcanogenic massive sulfide deposits are hosted by either ophiolites of marginal basin origin or metamorphic terranes. Exploration works on these deposits have been geared in determining the gold content of the massive sulfides. Chromitite deposits are related with ultramafic rock-hosted deposits. Their occurrence is attributed to crystallization, magma mixing and mantle-melt interaction processes in subduction-related settings. The multiple stages of partial melting responsible for the formation of supra-subduction zone ophiolites result in the generation of second to third stage melts that are enriched in nickel sulfides and platinum group minerals. On the basis of structural, geochemical and tectonic controls, Panay, Mindoro and Central Mindanao and the Sierra Madre, Leyte, and Samar are good exploration targets for precious and base metal deposition in the western and eastern sides of the Philippines, respectively.  相似文献   

4.
The Haji‐Abad ophiolite in SW Iran (Outer Zagros Ophiolite Belt) is a remnant of the Late Cretaceous supra‐subduction zone ophiolites along the Bitlis–Zagros suture zone of southern Tethys. These ophiolites are coeval in age with the Late Cretaceous peri‐Arabian ophiolite belt including the Troodos (Cyprus), Kizildag (Turkey), Baer‐Bassit (Syria) and Semail (Oman) in the eastern Mediterranean region, as well as other Late Cretaceous Zagros ophiolites. Mantle tectonites constitute the main lithology of the Haji‐Abad ophiolite and are mostly lherzolites, depleted harzburgite with widespread residual and foliated/discordant dunite lenses. Podiform chromitites are common and are typically enveloped by thin dunitic haloes. Harzburgitic spinels are geochemically characterized by low and/or high Cr number, showing tendency to plot both in depleted abyssal and fore‐arc peridotites fields. Lherzolites are less refractory with slightly higher bulk REE contents and characterized by 7–12% partial melting of a spinel lherzolitic source whereas depleted harzburgites have very low abundances of REE and represented by more than 17% partial melting. The Haji‐Abad ophiolite crustal sequences are characterized by ultramafic cumulates and volcanic rocks. The volcanic rocks comprise pillow lavas and massive lava flows with basaltic to more‐evolved dacitic composition. The geochemistry and petrology of the Haji‐Abad volcanic rocks show a magmatic progression from early‐erupted E‐MORB‐type pillow lavas to late‐stages boninitic lavas. The E‐MORB‐type lavas have LREE‐enriched patterns without (or with slight) depletion in Nb–Ta. Boninitic lavas are highly depleted in bulk REEs and are represented by strong LREE‐depleted patterns and Nb–Ta negative anomalies. Tonalitic and plagiogranitic intrusions of small size, with calc‐alkaline signature, are common in the ophiolite complex. The Late Cretaceous Tethyan ophiolites like those at the Troodos, eastern Mediterranean, Oman and Zagros show similar ages and geochemical signatures, suggesting widespread supra‐subduction zone magmatism in all Neotethyan ophiolites during the Late Cretaceous. The geochemical patterns of the Haji‐Abad ophiolites as well as those of other Late Cretaceous Tethyan ophiolites, reflect a fore‐arc tectonic setting for the generation of the magmatic rocks in the southern branch of Neotethys during the Late Cretaceous. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract. The oceanic basement of the Central Philippines is exposed in ophiolitic massifs the age and origin of which remain debated. The Tacloban Ophiolite Complex (TOC) outcrops as a NW-SE trending massif in the northeastern portion of Leyte Island, Central Philippines. It is unconformably overlain by sedimentary sequences dated to Late Miocene-Pliocene and Pleistocene volcaniclastic deposits on its eastern and western flanks, respectively. Field, petrographic and trace element data suggest a subduction-related origin for this ophiolite. Sensitive High Resolution Ion Microprobe (SHRIMP) U-Pb dating of zircons from a gabbro yielded Early Cretaceous magmatic age for the TOC, which is very much older than a previously reported whole rock K-Ar derived Eocene age. The Early Cretaceous age of the TOC limits its possible progenitor to the proto-Philippine Sea Plate. Correlation with other Cretaceous ophiolites in Central Philippines reveals the possible extent of the proto-Philippine Sea Plate remnants now exposed onland.  相似文献   

6.
A unique feature of the Circum Pacific orogenic belts is the occurrence of ophiolitic bodies of various sizes, most of which display petrological and geochemical characteristics typical of supra-subduction zone oceanic crust. In SE Asia, a majority of the ophiolites appear to have originated at convergent margins, and specifically in backarc or island arc settings, which evolved either along the edge of the Sunda (Eurasia) and Australian cratons, or within the Philippine Sea Plate. These ophiolites were later accreted to continental margins during the Tertiary. Because of fast relative plate velocities, tectonic regimes at the active margins of these three plates also changed rapidly. Strain partitioning associated with oblique convergence caused arc-trench systems to move further away from the locus of their accretion. We distinguish “relatively autochthonous ophiolites” resulting from the shortening of marginal basins such as the present-day South China Sea or the Coral Sea, and “highly displaced ophiolites” developed in oblique convergent margins, where they were dismantled, transported and locally severely sheared during final docking. In peri-cratonic mobile belts (i.e. the Philippine Mobile Belt) we find a series of oceanic basins which have been slightly deformed and uplifted. Varying lithologies and geochemical compositions of tectonic units in these basins, as well as their age discrepancies, suggest important displacements along major wrench faults.We have used plate tectonic reconstructions to restore the former backarc basins and island arcs characterized by known petro-geochemical data to their original location and their former tectonic settings. Some of the ophiolites occurring in front of the Sunda plate represent supra-subduction zone basins formed along the Australian Craton margin during the Mesozoic. The Philippine Sea Basin, the Huatung basin south of Taiwan, and composite ophiolitic basements of the Philippines and Halmahera may represent remnants of such marginal basins. The portion of the Philippine Sea Plate carrying the Taiwan–Philippine arc and its composite ophiolitic/continental crustal basement might have actually originated in a different setting, closer to that of the Papua New Guinea Ophiolite, and then have been displaced rapidly as a result of shearing associated with fast oblique convergence.  相似文献   

7.
New radiolarian ages show that the island arc-related Acoje block of the Zambales Ophiolite Complex is possibly of Late Jurassic to Early Cretaceous age.Radiometric dating of its plutonic and volcanichypabyssal rocks yielded middle Eocene ages.On the other hand,the paleontological dating of the sedimentary carapace of the transitional mid-ocean ridge-island arc affiliated Coto block of the ophiolite complex,together with isotopic age datings of its dikes and mafic cumulate rocks,also yielded Eocene ages.This offers the possibility that the Zambales Ophiolite Complex could have:(1)evolved from a Mesozoic arc(Acoje block)that split to form a Cenozoic back-arc basin(Coto block),(2)through faulting,structurally juxtaposed a Mesozoic oceanic crust with a younger Cenozoic lithospheric fragment or(3)through the interplay of slab rollback,slab break-off and,at a later time,collision with a microcontinent fragment,caused the formation of an island arc-related ophiolite block(Acoje)that migrated trench-ward resulting into the generation of a back-arc basin(Coto block)with a limited subduction signature.This Meso-Cenozoic ophiolite complex is compared with the other oceanic lithosphere fragments along the western seaboard of the Philippines in the context of their evolution in terms of their recognized environments of generation.  相似文献   

8.
Dismembered late Mesozoic ophiolites occur in two parallel belts along the eastern margin of the Indian Plate. The Eastern Belt, closely following the magmatic arc of the Central Burma Basin, coincides with a zone of high gravity. It is considered to mark a zone of steeply dipping mafic–ultramafic rocks and continental metamorphic rocks, which are the locus of two closely juxtaposed sutures. In contrast, the Western Belt, which follows the eastern margin of the Indo-Burma Range and the Andaman outer-island-arc, broadly follows a zone of negative gravity anomalies. Here the ophiolites occur mainly as rootless subhorizontal bodies overlying Eocene–Oligocene flyschoid sediments. Two sets of ophiolites that were accreted during the Early Cretaceous and mid-Eocene are juxtaposed in this belt. These are inferred to be westward propagated nappes from the Eastern Belt, emplaced during the late Oligocene collision between the Burmese and Indo-Burma-Andaman microcontinents.Ophiolite occurrences in the Andaman Islands belong to the Western Belt and are generally interpreted as upthrust oceanic crust, accreted due to prolonged subduction activity to the west of the island arc. This phase of subduction began only in the late Miocene and thus could not have produced the ophiolitic rocks, which were accreted in the late Early Eocene.  相似文献   

9.
The Avdella Mélange in the northern Pindos Mountains and its equivalent formation, the Loggitsion Unit in the Othris Mountains expose early Mesozoic (Mid-Late Triassic) oceanic fragments beneath the Western Greek Ophiolite Belt of the Inner Hellenides, Northern Greece. The mélange consists of locally interfingering blocks and slices of ribbon radiolarite, radiolarian chert and pillow basalt and is usually overthrust by Jurassic ophiolites. New Middle and Upper Triassic radiolarian biostratigraphic data are presented from radiolarites and basalt-radiolarite sequences within mélange blocks. Pillow basalts associated with the radiolarites provide clues to the opening of the Neotethyan ocean basin. The radiolarians indicate a Middle Triassic age (latest Anisian, probably early Illyrian), which is documented for the first time in the northern Pindos Mountains. The new radiolarian biostratigraphic data suggest that rift-type basalt volcanism already began in pre-Ladinian time (late Scythian?—Anisian). These basalts were then overlain by Upper Anisian to Carnian (?Norian) radiolarites.  相似文献   

10.
A coherent ophiolitic complex of pyroxenite, serpentinite, metagabbro, mafic volcanics, felsic volcanics and sediments crops out in NW Maine, adjacent to the Chain Lakes massif. The complex (here informally referred to as the Boil Mountain ophiolitic complex) is about 500 m.y. old. The volcanic sequence is not typical of ophiolites in that it contains a large proportion of felsic volcanics. The mafic volcanics are divided into two geochemical groups. A stratigraphically lower group is depleted in Ti, Zr, Y, Cr and REE contents similar to basalts from supra-subduction zone ophiolites. An upper mafic group has trace element contents similar to normal mid-ocean ridge basalts. The felsic volcanics are mostly rhyolitic and similar to low-K rhyolites found in the forearc of the Marianas trench and in an island arc sequence in the Klamath Mountains, California. The flat REE patterns of the felsic volcanic rocks are similar to those found in siliceous rocks in the Oman ophiolite. The presence of thick sequences of felsic volcanics, the abundance of pyroxenite, the low Ti, Zr and REE contents of some mafic rocks, the flat REE patterns of the felsic volcanics, and the composition of clinopyroxene all suggest the complex was formed in the vicinity of a subduction zone. The complex may be correlated with ophiolitic fragments in the eastern part of the Dunnage Zone in Newfoundland, rather than the main ophiolite belt of the western Appalachians.  相似文献   

11.
在进行1:25万墨脱幅地质调查中,笔者首次在波密地区发现和填绘出了帕隆藏布残留蛇绿混杂岩带。帕窿藏布残留蛇绿混杂岩呈串珠状产出于花岗岩类侵入岩中,其岩石组合为橄揽辉石岩、辉石岩、辉长岩、辉长辉绿岩、辉绿岩、石英岩和大理岩,局部可见条带状硅质岩。上述组分之间的相互关系表明,蛇绿岩在花岗岩类岩石侵入之前发生过构造混杂和变形。根据沉积岩所记录的盆地演化过程、蛇绿岩的Rb-Sr年龄值以及残留蛇绿混杂岩带两刨花岗岩类岩石的特征和生成时代综合分析认为:帕隆藏布残留蛇绿混杂岩带形成于石炭-二叠纪的弧间盆地中,至少在晚三叠纪之前出现洋壳,在消减过程中向北俯冲并在中侏罗世之前闭合(弧-弧碰撞)。  相似文献   

12.
We present first LA-ICP-MS U–Pb zircon ages as well as geochemical and Sr–Nd–Pb isotope data for 14 magmatic rocks collected along ca. 400 km profile across the Chatkal-Kurama terrane in the Mogol-Tau and Kurama ranges and the Gissar Segment of the Tien Shan orogen in Tajikistan. These new data from supra-subduction and post-collisional magmatic rocks of two Late Paleozoic active margins constrain a tectonic model for terrane motions across two paleo-subduction zones: (1) The 425 Ma old Muzbulak granite of the Mogol-Tau range formed in a supra-subduction setting at the northern margin of the Turkestan Ocean. The north-dipping plate was subducted from the Early Silurian to the earliest Middle Devonian. Thereafter the northern side of the Turkestan Ocean remained a passive margin until the Early Carboniferous. (2) In the Early Carboniferous, subduction under the northern margin of the Turkestan Ocean resumed and the 315 to 305 Ma old Kara-Kiya, Muzbek, and Karamazar intrusions formed in a supra-subduction setting in the Mogol-Tau and Kurama ranges. (3) At the same time, in the Early Carboniferous, rifting of the southern passive margin of the Turkestan Ocean formed the short-lived Gissar Basin, separated from the Turkestan Ocean by the Gissar micro-continent. North-dipping subduction in the Gissar Basin is documented by the 315 Ma Kharangon plagiogranite and the voluminous ca. 321–312 Ma Andean-type supra-subduction Gissar batholith. The Kharangon and Khanaka gabbro-plagiogranite intrusions of the southern Gissar range have geochemical and Sr–Nd isotopic compositions (87Sr/86Sr(t) 0.7047–0.7056, εNd of + 1.5 to + 2.3) compatible with mantle-derived origin typical for plagiogranites associated with ophiolites. The supra-subduction rocks from the Gissar batholith and from the Mogol-Tau Kurama ranges have variably mixed Sr–Nd–Pb isotopic signatures (87Sr/86Sr(t) 0.7057–0.7064, εNd of − 2.1 to − 5.0) typical for continental arcs where mantle-derived magmas interact with continental crust. (4) In the latest Carboniferous, the Turkestan Ocean and the Gissar Basin were closed. The Early Permian Chinorsay (288 Ma) and Dara-i-pioz (267 Ma) post-collisional intrusions, emplaced in the northern part of the Gissar micro-continent after a long period of amagmatic evolution, have intraplate geochemical affinities and isotopic Sr–Nd–Pb isotopic compositions (87Sr/86Sr(t) 0.7074–0.7086, εNd of − 5.5 to − 7.4) indicating derivation from Precambrian continental crust which is supported by old Nd model ages (1.5 and 1.7 Ga), and by the presence of inherited zircon grains with ages 850–500 Ma in the Chinorsay granodiorite. The post-collisional intrusions in the southern Gissar and in the Mogol-Tau and Kurama ranges (297–286 Ma), emplaced directly after supra-subduction magmatic series, have geochemical and isotopic signatures of arc-related magmas. The distinct shoshonitic affinities of post-collisional intrusions in the Mogol-Tau and Kurama ranges are explained by the interaction of hot asthenospheric material with subduction-enriched wedge of lithospheric mantle due to slab break-off at post-collisional stage. Despite origination from different tectonic environments, all magmatic rocks have relatively old Nd model ages (1.7–1.0 Ga) indicating a significant proportion of Paleoproterozoic or older crustal material in their sources and their model ages are similar to those of post-collisional intrusions from the Alai and Kokshaal Segments of the South Tien Shan.  相似文献   

13.
Geochemical characteristics of Ordovician basic volcanic rocks help to define the evolving tectonic setting of the Argentine Puna and northern Chile. Four spatially distinct magmatic groups are defined on geological, petrographical, geochemical and isotopic bases, each associated with particular geodynamic environments.The Tremadoc western group of subalkaline low K tholeiites with arc and modified MORB like signatures represent early stages of a back-arc basin, where spreading was incipient.The Arenig western group, medium K calc-alkaline basalts to andesites have volcanic arc in transition to back-arc signatures.The Tremadoc subalkaline basalts of the eastern group have REE patterns similar to E-MORB and at the same time weak subduction characteristics suggesting a rather mature supra-subduction zone (SSZ) basin. In contrast, the Late Tremadocian-Arenig basalts of the same group have intra-plate signatures, interpreted as magmas that ascended along pull apart regions associated with a transtensional regime.The geochemical patterns were applied to correlate basic sequences of doubtful geological setting. So, basalts from Chile were related to the Tremadocian western group, where they represent a slightly more mature stage of spreading of the basin. Basic rocks from Pocitos and part of Calalaste represent pre-Ordovician records of a back-arc system similar to that of the Tremadoc western group. Clearly similar arc patterns to those of the Arenig western group allow extending the arc environment to the southern Puna. The Tremadocian basalts from the eastern group were related to metabasites from the southern Puna, as part of a back-arc environment at that time.  相似文献   

14.
The Hili Manu peridotite occupies a key position at the outer limit of continental crust on the north coast of East Timor. Most models for the tectonic evolution of the Outer Banda Arc interpret peridotite bodies on Timor, such as Hili Manu, as fragments of young oceanic lithosphere from the Banda Arc (upper plate). However, recent workers have used major-element geochemistry to argue that the peridotite bodies on Timor were derived from the Australian subcontinental lithosphere. Our major, trace and isotopic geochemical study of the Hili Manu peridotite body supports a supra-subduction origin from either a forearc or backarc position for the Hili Manu peridotite. In particular, the wide range in Nd and Sr isotopic compositions, overlapping that of arc volcanics from the Sunda – Banda Island arc, and highly fractionated Nb/Ta values indicate a supra-subduction setting. As there is no evidence for subduction beneath the rifted Australian continental margin, it is unlikely that the Hili Manu peridotite is Australian subcontinental lithosphere. This result, along with the clear supra-subduction setting of the Ocuzzi peridotite and associated volcanics in West Timor, gives support to the interpretation that the Miocene collision between the Banda Arc and the Australian continental margin has produced widespread ‘Cordilleran’-style ophiolites on Timor.  相似文献   

15.
华北东部晚中生代中基性侵入杂岩体(如山东莱芜地区铁铜沟岩体;山东潍坊地区金岭.湖田岩体;河北邯邢地区符山岩体)中常含有橄榄岩捕虏体。这些橄榄岩的来源和成因问题存在很大争议,主要有堆晶成因或代表古老洋壳蛇绿岩和岩石圈地幔来源两种观点。本文在对山东潍坊地区金岭一湖田岩体中橄榄岩捕虏体的研究成果和总结前人资料的基础上,通过岩石学、矿物学和地球化学研究认为这些橄榄岩捕虏体皆是堆晶成因或代表古老洋壳蛇绿岩,而非岩石圈地幔直接样品。因此,不能用这些橄榄岩捕虏体的组成来反演该地区晚中生代岩石圈地幔特征。  相似文献   

16.
Iran is a mosaic of Ediacaran–Cambrian (Cadomian; 520–600 Ma) blocks, stitched together by Paleozoic and Mesozoic ophiolites. In this paper we summarize the Paleozoic ophiolites of Iran for the international geoscientific audience including field, chemical and geochronological data from the literature and our own unpublished data. We focus on the five best known examples of Middle to Late Paleozoic ophiolites which are remnants of Paleotethys, aligned in two main zones in northern Iran: Aghdarband, Mashhad and Rasht in the north and Jandagh–Anarak and Takab ophiolites to the south. Paleozoic ophiolites were emplaced when N-directed subduction resulted in collision of Gondwana fragment “Cimmeria” with Eurasia in Permo-Triassic time. Paleozoic ophiolites show both SSZ- and MORB-type mineralogical and geochemical signatures, perhaps reflecting formation in a marginal basin. Paleozoic ophiolites of Iran suggest a progression from oceanic crust formation above a subduction zone in Devonian time to accretionary convergence in Permian time. The Iranian Paleozoic ophiolites along with those of the Caucausus and Turkey in the west and Afghanistan, Turkmenistan and Tibet to the east, define a series of diachronous subduction-related marginal basins active from at least Early Devonian to Late Permian time.  相似文献   

17.
The collision of the Palawan microcontinental block with the Philippine mobile belt had significantly influenced the geological evolution of the Philippines. Multiple collisions involving several fragments, through space and time, resulted into the collage of terranes of varying origin exposed in this part of central Philippines. Cusping of the overriding plate, volcanic arc gap, ophiolite emplacement, incipient back-arc rifting, island rotation and tilting, raised coastal terraces, metamorphism, intrusion of igneous rocks and steepened subducted slab as seen in focal mechanism solutions are some of the manifestations of this collision. A late Early Miocene to early Middle Miocene age (20–16 Ma) is proposed for the major collision between the Palawan indenter and the Philippine mobile belt. The collision boundary is located from the northern part of Mindoro through the central mountain range swinging east of Sibuyan Island in the Romblon Island Group and finally threading along the Buruanga Peninsula and eastern side of the Antique Ophiolite Complex before exiting and connecting with the Negros Trench. The collision, through accretion and crustal thickening, has contributed to the crustal growth of the Philippine archipelago.  相似文献   

18.
The Sabzevar ophiolites, located at the northern margin of the Central-East Iranian microcontinent (CEIM), are part of the Mesozoic-Paleogene Neotethyan suture zone developed along the Alpine-Himalayan convergence zone. These ophiolites consist mostly of oceanic lithospheric remnants, covered by early Campanian-late Maastrichtian volcano-sedimentary successions. A distinctive characteristic of the Sabzevar ophiolites is the occurrence of mafic dike swarms (gabbros, gabbronorites and diorites) with forearc-arc-tholeiitic geochemical signature, intruding the mantle section. Occurrence of orthopyroxene, development of pegmatitic texture, crystallization of clinopyroxene prior to plagioclase, and the presence of anorthite-rich plagioclase imply relatively high H2O content in the magmatic plumbing system. Rare plagiogranites (tonalite and trondhjemite compositions) show geochemical features compatible with a supra-subduction setting, whereas late (hornblende-bearing) gabbro dikes show a within-plate signature. The bimodal geochemical affinity (subduction vs. intraplate) is also attested by clinopyroxene compositions. The gabbroic, plagiogranitic and gabbronoritic samples yield Early Cretaceous SHRIMP zircon U-Pb ages of 96.7 ± 1, 98 ± 1 and 94 ± 1 Ma, respectively. A progression from tholeiitic MORB-like to more depleted high-Mg andesite and eventually alkaline affinities is here proposed, framing the magma evolution as generated in an evolving forearc setting that post-dated (of at least 9 Myr) the formation of the metamorphic sole during the infant stages of subduction of the Sabzevar Ocean.A scenario of far-field forced subduction initiation of the Sabzevar Ocean is proposed as consequence of propagation of the residual stresses transmitted from the Arabia-Eurasia convergence zone across the CEIM during Cretaceous times (Albian-Campanian).  相似文献   

19.
We present detailed geochronological, geochemical and Sr-Nd-Pb isotopic data for late Mesozoic mafic intrusions in the Taili region (western Liaodong Province) of the eastern North China Craton (NCC). We obtained laser-ablation inductively-coupled plasma mass spectrometry U-Pb zircon ages from lamprophyres with ages ranging from 139 to 162 Ma and diorites with clusters of ages at 226 ± 11 Ma, 165 ± 5.8 Ma and 140 ± 4.8 Ma. We interpret the Triassic zircons in diorites to be inherited from the Paleo-Asian Ocean slab. Both the lamprophyres and diorites contain abundant inherited grains (2644–2456 Ma) that were likely derived from the ancient NCC basement, reflecting a contribution from old lower crustal material. Like contemporaneous late Mesozoic mafic rocks in the Jiaodong and Liaodong Peninsula areas of the NCC, the Taili lamprophyres reveal a strong subduction signature in their normalized trace element patterns, including depletion of high field strength elements and enrichment of large ion lithophile elements. The rare-earth element patterns of the Taili intermediate-mafic intrusions are best explained if they were principally derived from partial melting of amphibole-bearing lherzolite in the spinel-garnet transition zone. Slab-derived melts likely contributed to the formation of late Mesozoic mafic rocks along three margins of the craton: due to accretion of the Yangtze Block along the southern margin of the craton, subduction of the Paleo-Asian Ocean along the northern margin, and subduction of the Paleo-Pacific oceanic plate along the eastern margin of NCC. We present a synthesis of the geochemical, spatial, and temporal patterns of magmatic rocks and periods of deformation that contributed to decratonization of the NCC in response to the Mesozoic tectonic evolution of adjacent plates along its northern, southern, and eastern margins.  相似文献   

20.
The middle Jurassic Coast Range Ophiolite (CRO) is one of the most important tectonic elements in western California, cropping out as tectonically dismembered elements that extend 700 km from south to north. The volcanic and plutonic sections are commonly interpreted to represent a supra-subduction zone (SSZ) ophiolite, but models specifying a mid-ocean ridge origin have also been proposed. These contrasting interpretations have distinctly different implications for the tectonic evolution of the western Cordillera in the Jurassic. If an SSZ origin is confirmed, we can use the underlying mantle peridotites to elucidate melt processes in the mantle wedge above the subduction zone. This study uses laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) to study pyroxenes in peridotites from four mantle sections in the CRO. Trace element signatures of these pyroxenes record magmatic processes characteristic of both mid-ocean ridge and supra-subduction zone settings. Group A clinopyroxene display enriched REE concentrations [e.g., Gd (0.938–1.663 ppm), Dy (1.79–3.24 ppm), Yb (1.216–2.047 ppm), and Lu (0.168–0.290 ppm)], compared to Group B and C clinopyroxenes [e.g., Gd (0.048–0.055 ppm), Dy (0.114–0.225 ppm), Yb (0.128–0.340 ppm), and Lu (0.022–0.05 ppm)]. These patterns are also evident in orthopyroxene. The differences between these geochemical signatures could be a result of a heterogeneous upper mantle or different degrees of partial melting of the upper mantle. It will be shown that CRO peridotites were generated through fractional melting. The shapes of REE patterns are consistent with variable degrees of melting initiated within the garnet stability field. Models call for 3% dry partial melting of MORB-source asthenosphere in the garnet lherzolite field for abyssal peridotites and 15–20% further partial melting in the spinel lherzolite field, possibly by hydrous melting for SSZ peridotites. These geochemical variations and occurrence of both styles of melting regimes within close spatial and temporal association suggest that certain segments of the CRO may represent oceanic lithosphere, attached to a large-offset transform fault and that east-dipping, proto-Franciscan subduction may have been initiated along this transform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号