首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diterpenoids are usually found in plants and fungi, but are rare in bacteria. We have previously reported new diterpenes, named tuberculosinol and isotuberculosinol, which are generated from the Mycobacterium tuberculosis gene products Rv3377c and Rv3378c. No homologous gene was found at that time, but we recently found highly homologous proteins in the Herpetosiphon aurantiacus ATCC 23779 genome. Haur_2145 was a class II diterpene cyclase responsible for the conversion of geranylgeranyl diphosphate into kolavenyl diphosphate. Haur_2146, homologous to Rv3378c, synthesized (+)‐kolavelool through the nucleophilic addition of a water molecule to the incipient cation formed after the diphosphate moiety was released. Haur_2147 afforded (+)‐O‐methylkolavelool from (+)‐kolavelool, so this enzyme was an O‐methyltransferase. This new diterpene was indeed detected in H. aurantiacus cells. This is the first report of the identification of a (+)‐O‐methylkolavelool biosynthetic gene cluster.  相似文献   

2.
The diterpene pleuromutilin is a ribosome‐targeting antibiotic isolated from basidiomycete fungi, such as Clitopilus pseudo‐pinsitus. The functional characterization of all biosynthetic enzymes involved in pleuromutilin biosynthesis is reported and a biosynthetic pathway proposed. In vitro enzymatic reactions and mutational analysis revealed that a labdane‐related diterpene synthase, Ple3, catalyzed two rounds of cyclization from geranylgeranyl diphosphate to premutilin possessing a characteristic 5–6–8‐tricyclic carbon skeleton. Biotransformation experiments utilizing Aspergillus oryzae transformants possessing modification enzyme genes allowed the biosynthetic pathway from premutilin to pleuromutilin to be proposed. The present study sets the stage for the enzymatic synthesis of natural products isolated from basidiomycete fungi, which are a prolific source of structurally diverse and biologically active terpenoids.  相似文献   

3.
The biosynthesis of terpenes is catalysed by class I and II terpene cyclases. Here we present structural data from a class I hedycaryol synthase in complex with nerolidol, serving as a surrogate for the reaction intermediate nerolidyl diphosphate. This prefolded ligand allows mapping of the active site and hence the identification of a key carbonyl oxygen of Val179, a highly conserved helix break (G1/2) and its corresponding helix dipole. Stabilising the carbocation at the substrate's C1 position, these elements act in concert to catalyse the 1,10 ring closure, thereby exclusively generating the anti‐Markovnikov product. The delineation of a general mechanistic scaffold was confirmed by site‐specific mutations. This work serves as a basis for understanding carbocation chemistry in enzymatic reactions and should contribute to future application of these enzymes in organic synthesis.  相似文献   

4.
The phenylalanine aminomutase (PAM) from Taxus chinensis catalyses the conversion of α‐phenylalanine to β‐phenylalanine, an important step in the biosynthesis of the N‐benzoyl phenylisoserinoyl side‐chain of the anticancer drug taxol. Mechanistic studies on PAM have suggested that (E)‐cinnamic acid is an intermediate in the mutase reaction and that it can be released from the enzyme's active site. Here we describe a novel synthetic strategy that is based on the finding that ring‐substituted (E)‐cinnamic acids can serve as a substrate in PAM‐catalysed ammonia addition reactions for the biocatalytic production of several important β‐amino acids. The enzyme has a broad substrate range and a high enantioselectivity with cinnamic acid derivatives; this allows the synthesis of several non‐natural aromatic α‐ and β‐amino acids in excellent enantiomeric excess (ee >99 %). The internal 5‐methylene‐3,5‐dihydroimidazol‐4‐one (MIO) cofactor is essential for the PAM‐catalysed amination reactions. The regioselectivity of amination reactions was influenced by the nature of the ring substituent.  相似文献   

5.
Terpene synthases catalyse the first step in the conversion of prenyl diphosphates to terpenoids. They act as templates for their substrates to generate a reactive conformation, from which a Mg2+‐dependent reaction creates a carbocation–PPi ion pair that undergoes a series of rearrangements and (de)protonations to give the final terpene product. This tight conformational control was exploited for the (R)‐germacrene A synthase– and germacradien‐4‐ol synthase–catalysed formation of a medium‐sized cyclic terpenoid ether from substrates containing nucleophilic functional groups. Farnesyl diphosphate analogues with a 10,11‐epoxide or an allylic alcohol were efficiently converted to a 11‐membered cyclic terpenoid ether that was characterised by HRMS and NMR spectroscopic analyses. Further experiments showed that other sesquiterpene synthases, including aristolochene synthase, δ‐cadinene synthase and amorphadiene synthase, yielded this novel terpenoid from the same substrate analogues. This work illustrates the potential of terpene synthases for the efficient generation of structurally and functionally novel medium‐sized terpene ethers.  相似文献   

6.
Terpenes represent one of the most diversified classes of natural products with potent biological activities. The key to the myriad of polycyclic terpene skeletons with crucial functions in organisms from all kingdoms of life are terpene cyclase enzymes. These biocatalysts enable stereospecific cyclization of relatively simple, linear, prefolded polyisoprenes by highly complex, partially concerted, electrophilic cyclization cascades that remain incompletely understood. Herein, additional mechanistic light is shed on terpene biosynthesis by kinetic studies in mixed H2O/D2O buffers of a class II bacterial ent‐copalyl diphosphate synthase. Mass spectrometry determination of the extent of deuterium incorporation in the bicyclic product, reminiscent of initial carbocation formation by protonation, resulted in a large kinetic isotope effect of up to seven. Kinetic analysis at different temperatures confirmed that the isotope effect was independent of temperature, which is consistent with hydrogen tunneling.  相似文献   

7.
The diterpene synthase clerodienyl diphosphate synthase 1 (PvCPS1) from the crop plant switchgrass (Panicum virgatum) stereoselectively converts (E,E,E)-geranylgeranyl diphosphate (GGPP) into the clerodane natural product, cis-trans-clerodienyl diphosphate (CLPP, 1 ). Structure-guided point mutations of PvCPS1 redirected product stereoselectivity toward the formation of a rare cis-clerodane diastereomer, cis-cis-CLPP ( 2 ). Additionally, an alternative cis-clerodane diastereomer, (5S,8S,9R,10R)-13Z-CLPP ( 3 ), was produced when treating PvCPS1 and select variants thereof with the cis-prenyl substrate (Z,Z,Z)-nerylneryl diphosphate (NNPP). These results support the hypothesis that substrate configuration and minor active-site alterations impact precatalysis substrate folding in the stereoselective biosynthesis of clerodane diterpenoid scaffolds, and can be employed to provide enzymatic access to a broader range of bioactive clerodane natural products.  相似文献   

8.
δ‐Cadinene synthase is a sesquiterpene cyclase that utilises the universal achiral precursor farnesyl diphosphate (FDP) to generate predominantly the bicyclic sesquiterpene δ‐cadinene and about 2 % germacradien‐4‐ol, which is also generated from FDP by the cyclase germacradien‐4‐ol synthase. Herein, the mechanism by which sesquiterpene synthases discriminate between deprotonation and reaction with a nucleophilic water molecule was investigated by site‐directed mutagenesis of δ‐cadinene synthase. If W279 in δ‐cadinene synthase was replaced with various smaller amino acids, the ratio of alcohol versus hydrocarbon product was directly proportional to the van der Waals volume of the amino acid side chain. DCS‐W279A is a catalytically highly efficient germacradien‐4‐ol synthase (kcat/KM=1.4×10?3 μm s?1) that produces predominantly germacradien‐4‐ol in addition to 11 % δ‐cadinene. Water capture is not achieved through strategic positioning of a water molecule in the active site, but through a coordinated series of loop movements that allow bulk water access to the final carbocation in the active site prior to product release.  相似文献   

9.
The behavior of four dimethylallyltryptophan synthases (DMATSs) (5‐DMATS and 5‐DMATSSc as tryptophan C5‐prenyltransferases, and 6‐DMATSSa and 6‐DMATSSv as C6‐prenyltransferases) and one L ‐tyrosine prenyltransferase with a tryptophan C7‐prenyltransferase activity was investigated in the presence of two unnatural alkyl donors (methylallyl and 2‐pentenyl diphosphate) and one benzyl donor (benzyl diphosphate). Detailed biochemical investigations revealed the acceptance of these dimethylallyl diphosphate (DMAPP) analogues by all tested enzymes with different relative activities. Enzyme products with the allyl or benzyl moiety attached to different positions were identified in the reaction mixtures, whereby C‐6 alkylated or benzylated L ‐tryptophan was found as one of the main products. This observation demonstrates a preference of the five prenyltransferases toward C‐6 of the indole ring in the presence of unnatural DMAPP derivatives. Molecular dynamics simulation experiments with a homologous model of 5‐DMATS explained well its reactions with methylallyl and 2‐pentenyl diphosphate. Furthermore this study expands significantly the potential usage of tryptophan prenylating enzymes as biocatalysts for Friedel–Crafts alkylation.

  相似文献   


10.
The purple photosynthetic bacterium Rhodospirillum centenum has a putative type III polyketide synthase gene (rpsA). Although rpsA was known to be transcribed during the formation of dormant cells, the reaction catalyzed by RpsA was unknown. Thus we examined the RpsA reaction in vitro, using various fatty acyl‐CoAs with even numbers of carbons as starter substrates. RpsA produced tetraketide pyranones as major compounds from one C10–14 fatty acyl‐CoA unit, one malonyl‐CoA unit and two methylmalonyl‐CoA units. We identified these products as 4‐hydroxy‐3‐methyl‐6‐(1‐methyl‐2‐oxoalkyl)pyran‐2‐ones by NMR analysis. RpsA is the first bacterial type III PKS that prefers to incorporate two molecules of methylmalonyl‐CoA as the extender substrate. In addition, in vitro reactions with 13C‐labeled malonyl‐CoA revealed that RpsA produced tetraketide 6‐alkyl‐4‐hydroxy‐1,5‐dimethyl‐2‐oxocyclohexa‐3,5‐diene‐1‐carboxylic acids from C14–20 fatty acyl‐CoAs. This class of compounds is likely synthesized through aldol condensation induced by methine proton abstraction. No type III polyketide synthase that catalyzes this reaction has been reported so far. These two unusual features of RpsA extend the catalytic functions of the type III polyketide synthase family.  相似文献   

11.
We performed functional analysis of recombinant enzymes and analysis of isoprenoid metabolites in Bacillus clausii to gain insights into the biosynthesis of rare terpenoid groups of sesterterpenes, head‐to‐tail triterpenes, and sesquarterpenes. We have identified an (all‐E)‐isoprenyl diphosphate synthase (E‐IDS) homologue as a trifunctional geranylfarnesyl diphosphate (GFPP)/hexaprenyl diphosphate (HexPP)/heptaprenyl diphosphate (HepPP) synthase. In addition, we have redefined the function of a tetraprenyl‐β‐curcumene synthase homologue as that of a trifunctional sesterterpene/triterpene/sesquarterpene synthase. This study has revealed that GFPP, HexPP, and HepPP, intermediates of two isoprenoid pathways (acyclic terpenes and menaquinones), are biosynthesized by one trifunctional E‐IDS. In addition, GFPP/HexPP and HepPP are the primary substrates for the biosynthesis of acyclic terpenes and menaquinone‐7, respectively.  相似文献   

12.
Iodoacrylate esters undergo palladium‐catalysed reductive homocoupling to derive dienyl diester derivatives. This reductive coupling can be extended to ester‐substituted terminal iododienes to derive tetraene diesters. In all cases, the reactions show relatively high levels of stereocontrol, which shows an inversion of stereochemistry about one iodoalkene unit. This process, and the suggestion that the reaction releases diiodine, is consistent with a syn‐1,2‐addition of an iodopalladium(II)‐alkene species across another iodoalkene unit (carbometallation step), followed by reductive syn‐elimination of iodopalladium iodide to derive palladium(II) iodide. It appears that under the reaction conditions employed, palladium(II) iodide may equilibrate to palladium(0) and diiodine, which can be observed or trapped out from the reaction mixture.  相似文献   

13.
One‐pot multienzymatic reactions have been performed for the synthesis of 1‐deoxy‐D ‐fructose 6‐phosphate, 1,2‐dideoxy‐D ‐arabino‐hept‐3‐ulose 7‐phosphate, D ‐fructose 6‐phosphate and D ‐arabinose 5‐phosphate. The whole synthetic strategy is based on an aldol addition reaction catalysed by fructose‐6‐phosphate aldolase (FSA) as a key step of a three or four enzymes‐catalysed cascade reaction. The four known donors for FSA – dihydroxyacetone (DHA), hydroxyacetone (HA), 1‐hydroxy‐2‐butanone (HB) and glycolaldehyde (GA) – were used with D ‐glyceraldehyde 3‐phosphate as acceptor substrate. The target phosphorylated sugars were obtained in good to excellent yields and high purity.  相似文献   

14.
The fungus Fusarium fujikuroi IMI58289 emits a complex pattern of volatile terpenoids including two major compounds, the sesquiterpene alcohol α-acorenol and the diterpene ent-kaurene. ent-Kaurene is the precursor for the phytohormone gibberellic acid (GA(3)) and is produced from geranylgeranyl diphosphate (GGPP) via ent-copalyl diphosphate by the bifunctional ent-copalyl diphosphate/ent-kaurene synthase (CPS/KS). Several structurally related diterpenes were identified as side products of the CPS/KS. Deletion of the cps/ks gene or the whole GA(3) biosynthetic gene cluster resulted in completely abolished diterpene production. Mutants with deletions of the cytochrome P450 monooxygenase gene P450-4, which is responsible for the three oxidation steps from ent-kaurene to ent-kaurenoic acid en route to GA(3), accumulate diterpene hydrocarbons. Feeding with [6,6,6-(2) H(3)] mevalonolactone gave insights into the stereochemistry of the GGPP cyclisation, which operates with a chair-chair-"antipodal" fold. A rational biosynthetic scheme for all identified sesquiterpenes demonstrated their formation from farnesyl diphosphate (FPP) via three alternative initial cyclisations. Genome sequencing revealed the presence of five putative sesquiterpene synthase genes in the F. fujikuroi genome. The structures of several trace compounds from other classes have been identified as new natural products; these were delineated from their mass spectra and unambiguously assigned by comparison to synthetic references.  相似文献   

15.
Synthetic ways towards uridine 5′‐diphosphate (UDP)‐xylose are scarce and not well established, although this compound plays an important role in the glycobiology of various organisms and cell types. We show here how UDP‐glucose 6‐dehydrogenase (hUGDH) and UDP‐xylose synthase 1 (hUXS) from Homo sapiens can be used for the efficient production of pure UDP‐α‐xylose from UDP‐glucose. In a mimic of the natural biosynthetic route, UDP‐glucose is converted to UDP‐glucuronic acid by hUGDH, followed by subsequent formation of UDP‐xylose by hUXS. The nicotinamide adenine dinucleotide (NAD+) required in the hUGDH reaction is continuously regenerated in a three‐step chemo‐enzymatic cascade. In the first step, reduced NAD+ (NADH) is recycled by xylose reductase from Candida tenuis via reduction of 9,10‐phenanthrenequinone (PQ). Radical chemical re‐oxidation of this mediator in the second step reduces molecular oxygen to hydrogen peroxide (H2O2) that is cleaved by bovine liver catalase in the last step. A comprehensive analysis of the coupled chemo‐enzymatic reactions revealed pronounced inhibition of hUGDH by NADH and UDP‐xylose as well as an adequate oxygen supply for PQ re‐oxidation as major bottlenecks of effective performance of the overall multi‐step reaction system. Net oxidation of UDP‐glucose to UDP‐xylose by hydrogen peroxide (H2O2) could thus be achieved when using an in situ oxygen supply through periodic external feed of H2O2 during the reaction. Engineering of the interrelated reaction parameters finally enabled production of 19.5 mM (10.5 g L −1) UDP‐α‐xylose. After two‐step chromatographic purification the compound was obtained in high purity (>98%) and good overall yield (46%). The results provide a strong case for application of multi‐step redox cascades in the synthesis of nucleotide sugar products.

  相似文献   


16.
Analysis of the recently solved X‐ray crystal structures of Saccharomyces cerevisiae ribonucleotide reductase I (ScRnr1) in complex with effectors and substrates led to the discovery of a conserved water molecule located at the active site that interacted with the 2′‐hydroxy group of the nucleoside ribose. In this study 2′‐(2‐hydroxyethyl)‐2′‐deoxyadenosine 1 and the 5′‐diphosphate derivative 2 were designed and synthesized to see if the conserved water molecule could be displaced by a hydroxymethylene group, to generate novel RNR inhibitors as potential antitumor agents. Herein we report the synthesis of analogues 1 and 2 , and the co‐crystal structure of adenosine diphosphate analogue 2 bound to ScRnr1, which shows the conserved water molecule is displaced as hypothesized.  相似文献   

17.
BACKGROUND: The demand for enantiomerically pure molecules is growing continuously and biocatalysis is a powerful technique for their production. In this work, the catalyst was an enzyme combined with its coenzyme, NADP. High pressure technology, a second clean technology, was applied as well. Dense gases are promising solvents for biocatalysis. They have been investigated extensively as reaction media for lipase‐catalysed reactions, but seldom for reactions, catalysed with alcohol dehydrogenases, as in this work. RESULT: The production of optically pure R‐1‐phenylethanol from acetophenone was investigated. The NADP‐dependent alcohol dehydrogenase from Lactobacillus brevis (LBADH) was used as a catalyst. The hydrogenation was performed with isopropanol as a co‐substrate in different conditions: dense propane with LBADH and NADP co‐immobilized on glass beads and in the biphasic system water/dense propane. The obtained R‐1‐phenylethanol was enantiopure. The conversions were up to 90%. Deactivation of LBADH was also measured in these media. CONCLUSION: Protocols were successfully developed for the testing of alcohol dehydrogenase activity in dense gases. Enantioselectivity of LBADH is excellent in those media but it deactivated quickly. An LBADH‐catalysed reaction was performed in a dense gas for the first time. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
A copper‐catalysed multicomponent coupling reaction between readily available (Z)‐3‐iodoacrylic acids, terminal alkynes, and primary amines was developed to smoothly access a small library of 5‐hydroxy‐1H‐pyrrol‐2(5H)‐ones in good yields. This practical and general process was applied to a short‐steps synthesis of the natural product pulchellalactam.

  相似文献   


19.
The highly regioselective cobalt‐catalysed 1,4‐hydrovinylation of terminal alkenes with 2‐trimethylsilyloxy‐1,3‐butadiene generates in a stereospecific fashion unsaturated E‐configured silyl enol ether intermediates that are suitable for diastereoselective Mukaiyama‐aldol reactions with bulky aliphatic aldehydes. The acidic hydrolysis of the enol ethers to γ,δ‐unsaturated ketones followed by ozonolysis can be used for the synthesis of various 1,4‐diketones and polycarbonyl derivatives. The 1,4‐diketones and polycarbonyl derivatives were successfully tested for the synthesis of some mono‐ and bis‐pyrrole derivatives. The γ,δ‐unsaturated ketones are useful building blocks (e.g., in natural product synthesis) and can be generated in a one‐pot procedure.  相似文献   

20.
In the presence of a cationic gold(I) catalyst and N‐halosuccinimide, both trimethylsilyl‐protected and terminal alkynes are converted into alkynyl halides. Further experiments showed that silyl‐protected alkynes undergo electrophilic iodination and bromination under Brønsted acid catalysis, whilst terminal alkynes require a cationic gold catalyst. The former reactions probably proceed via activation of the electrophile, whilst the latter reactions proceed via a gold(I) acetylide intermediate. Gold‐catalysed halogenation was further combined with gold‐catalysed hydration and subsequent annulation to provide convenient routes to iodomethyl ketones and five‐membered aromatic heterocycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号