首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
基于三维机织碳/碳复合材料的细观结构特征, 设计平板十字形试样, 在材料双轴力学性能试验机上开展了复合材料单轴、 双轴加载压缩试验, 对比分析了三维机织碳/碳复合材料在双轴压缩载荷下的力学行为。研究表明: 三维机织碳/碳复合材料的压缩行为表现为非线性、 脆性断裂; 双轴载荷作用下非线性特征更为显著, 压缩模量随应力的增加而增大, 强度与模量相较于单轴有较大幅度增加, 双轴压缩载荷作用下材料的强化效应显著; 试样破坏位置并未出现在试样中心区, 而是发生在试样的加载端部或十字形试样的加载分枝根部, 主要表现为基体开裂、 纤维断裂和层间脱粘, 碳布及其层间界面剪切强度的强弱直接影响材料的压缩强度。  相似文献   

2.
横向断裂是制约复合材料结构设计的关键点,传统细观模型因为不能充分考虑组分性能、体积分数和纤维形状及分布情况而不能有效预测材料横向力学性能。采用改进的随机序列吸收算法建立具有随机纤维分布的复合材料代表性体积单胞模型,考虑基体破坏和界面脱粘两种失效模式和固化过程中产生的残余应力,对模型在横向拉、压、剪3种载荷下的力学行为进行仿真计算。分析了不同界面强度对复合材料力学性能的影响规律。仿真结果与实验数据对比表明:横向模量预测误差在7%以内,压缩和剪切的强度误差在8%以内,结果一致性较好,表明该模型能够有效预测复合材料横向力学性能。  相似文献   

3.
为了研究典型2.5D机织复合材料的压缩性能,开展了复合材料单胞结构的经向和纬向压缩实验,并通过对材料编织结构的细观表征,建立了细观尺度的单胞有限元模型来模拟压缩载荷下单胞内部的变形及渐进失效过程。结果表明,2.5D机织复合材料在受压时表现出明显的非线性力学响应,材料沿经向的压缩模量和强度均高于纬向;经向压缩时材料的主要破坏模式有经纱的横向开裂、纤维束间的界面分层破坏、纬纱的压溃及基体的开裂,纬向压缩时出现的主要破坏模式是纬纱的压溃、纬纱纤维束的断裂及基体开裂;通过对比试验与有限元结果,认为所建立的细观有限元模型能够准确预测材料单胞在压缩载荷下的应力-应变响应,并且能够模拟编织结构中的损伤起始和演化过程。   相似文献   

4.
基于弹性弯曲波理论分析了应力波在复合材料内部的传播规律,并针对四枚缎纹织物复合材料,进行了准静态和动态验证实验研究。研究表明,在面内压缩载荷作用下,纤维束交织程度越高,材料压缩强度越低,说明织物复合材料的细观结构对其面内力学性能有重要影响。发现准静态载荷作用下试样主要为整体剪切破坏,且剪切断裂发生于加载方向纤维束的弯曲起始段;而动态载荷作用下,试样的主要损伤模式为分层,在应力波的作用下分层损伤沿纤维束间的界面扩展,同时伴随有纤维束弯曲起始段的剪切断裂。  相似文献   

5.
2.5维机织复合材料强度准则   总被引:2,自引:0,他引:2  
2.5维机织复合材料已有较为广泛的应用,目前对该类复合材料强度理论的研究还相对较少。根据2.5维机织复合材料拉伸破坏的细观机理,基于单向复合材料的三维Hoffman准则,建立了2.5维机织结构复合材料拉伸破坏准则,通过对2.5维机织复合材料3种结构24个试件进行拉伸试验,与计算预测结果的对比表明了本文建立的强度准则的合理性。研究表明,纤维拉伸断裂是2.5维机织复合材料拉伸破坏的主要原因;相比基于最大应力准则、Hashin准则建立的强度准则,基于Hoffman准则建立的强度准则综合考虑了纤维在外载荷作用下各应力分量对纤维断裂破坏的影响,其预测结果与实际试验结果更为接近;在其他条件不变情况下,随纱线取向角增大,纱线拉伸断裂应力呈非线性降低。随纱线纤维体积含量增加,纱线拉伸断裂应力成线性增加。  相似文献   

6.
提出了一种新的基于物理失效模式的复合材料跨尺度失效准则,从细观层面分别对纤维和基体的失效模式进行了表征,将纤维失效分为拉伸失效和压缩失效,将基体失效分为膨胀失效和扭曲失效.建立了相应的失效准则及损伤演化方法.通过正方形和六边形的代表体积单元(RVE)模型,计算了宏观应力到细观应力的机械应力放大系数和热应力放大系数.以IM7/5250-4复合材料拉伸试验作为算例对失效模型进行了验证.计算结果与试验结果吻合较好,表明跨尺度失效准则能够准确预测复合材料层合板的破坏.  相似文献   

7.
提出了一种新的基于物理失效模式的复合材料跨尺度失效准则, 从细观层面分别对纤维和基体的失效模式进行了表征, 将纤维失效分为拉伸失效和压缩失效, 将基体失效分为膨胀失效和扭曲失效。建立了相应的失效准则及损伤演化方法。通过正方形和六边形的代表体积单元(RVE)模型, 计算了宏观应力到细观应力的机械应力放大系数和热应力放大系数。以IM7/5250-4复合材料拉伸试验作为算例对失效模型进行了验证。计算结果与试验结果吻合较好, 表明跨尺度失效准则能够准确预测复合材料层合板的破坏。  相似文献   

8.
针对连续石墨纤维增强铝基(CF/Al)复合材料,采用三种纤维排布方式的代表体积单元(RVE)建立了其细观力学有限元模型,采用准静态拉伸试验与数值模拟结合的方法,研究了其在轴向拉伸载荷下的渐进损伤与断裂力学行为。结果表明,采用基体合金和纤维原位力学性能建立的细观力学有限元模型,对轴向拉伸弹性模量和极限强度的计算结果与实验结果吻合良好,而断裂应变计算值较实验结果偏低。轴向拉伸变形中首先出现界面和基体合金损伤现象,随应变增加界面发生失效并诱发基体合金的局部失效,最后复合材料因纤维发生失效而破坏,从而出现界面脱粘后纤维拔出与基体合金撕裂共存的微观形貌。细观力学有限元分析结果表明,在复合材料制备后纤维性能衰减而强度较低条件下,改变界面强度和刚度对复合材料轴向拉伸弹塑性力学行为的影响较小,复合材料中纤维强度水平是决定该复合材料轴向拉伸力学性能的主要因素。  相似文献   

9.
单向纤维增强陶瓷基复合材料单轴拉伸行为   总被引:11,自引:5,他引:6       下载免费PDF全文
采用细观力学方法对单向纤维增强陶瓷基复合材料的单轴拉伸应力-应变行为进行了研究。采用Budiansky-Hutchinson-Evans(BHE)剪滞模型分析了复合材料出现损伤时的细观应力场,结合临界基体应变能准则、应变能释放率准则以及Curtin统计模型三种单一失效模型分别描述陶瓷基复合材料基体开裂、界面脱粘以及纤维失效三种损伤机制,确定了基体裂纹间隔、界面脱粘长度和纤维失效体积分数。将剪滞模型与3种单一失效模型相结合,对各个损伤阶段的应力-应变曲线进行模拟,建立了准确的复合材料强韧性预测模型,并讨论了界面参数和纤维韦布尔模量对复合材料损伤以及应力-应变曲线的影响。与室温下陶瓷基复合材料单轴拉伸试验数据进行了对比,各个损伤阶段的应力-应变、失效强度及应变与试验数据吻合较好。  相似文献   

10.
为了对碳纤维增强树脂基复合材料切削加工过程中的基体破坏及亚表层损伤机制进行研究,借助数值仿真方法建立了基于宏观各向异性的复合材料正交切削有限元模型。采用Hashin-Damage失效准则,通过定义纤维拉伸断裂、压缩屈曲极限应力及基体横向拉伸断裂、剪切断裂极限应力等数值,建立了复合材料切削加工动态物理仿真模型。通过切削力仿真值与实验值的比较,验证了仿真模型的有效性。通过对0°和90°纤维方向复合材料基体开裂和压溃的分析发现,当进入稳定切削后,基体开裂方向与纤维方向平行,而基体的压溃主要发生在刀尖周围。分析了纤维方向对复合材料亚表面损伤深度的影响,随着纤维方向角度的增加,工件亚表面裂纹损伤深度呈增长趋势。  相似文献   

11.
The influence of hydrostatic confinement on compressive strength and corresponding failure mechanisms is explored for SiC-reinforced glass-ceramics tested at different strain rates. Two composite architectures (0° and 0°/90°) are studied, and their behavior is compared with that of monolithic glass-ceramic tested under similar conditions. Composite confined pressure results are interpreted in terms of fiber buckling under quasi-static conditions and fiber kinking at high pressures, and compared with monolithic (non-composite) microfracture coalescence at low pressures and shear band formation under more intense confinement. In particular, dilatational fracture within the matrix dominates composite failure at low pressures, while high pressures cause a transition to shear-dominated mechanisms based on fiber kinking.  相似文献   

12.
Experimental and computational studies of the microscale mechanisms of damage formation and evolution in unidirectional glass fiber reinforced polymer composites (GFRP) under axial and off-axis compressive loading are carried out. A series of compressive testing of the composites with different angles between the loading vector and fiber direction were carried out under scanning electron microscopy (SEM) in situ observation. The damage mechanisms as well as stress strain curves were obtained in the experiments. It was shown that the compressive strength of composites drastically reduces when the angle between the fiber direction and the loading vector goes from 0° to 45° (by 2.3–2.6 times), and then slightly increases (when the angle approaches 80–90°). At the low angles between the fiber and the loading vector, fiber buckling and kinking are the main mechanisms of fiber failure. With increasing the angle between the fiber and applied loading, failure of glass fibers is mainly controlled by shear cracking. For the computational analysis of the damage mechanisms, 3D multifiber unit cell models of GFRP composites and X-FEM approach to the fracture modeling were used. The computational results correspond well to the experimental observations.  相似文献   

13.
基于高强、高韧、高模和压拉平衡为特征的第三代先进复合材料的需求,综述了连续纤维增强树脂复合材料纵向压缩强度预测模型的发展历程。基于纤维微屈曲、纤维扭结带、联合预测模型及渐进损伤失效模型,分别讨论了连续纤维增强树脂复合材料压缩失效机制,并在联合预测模型基础上,探究了碳纤维(直径、模量、体积分数、初始偏角)、树脂基体(弹性模量、剪切模量)及纤维/树脂界面三要素对连续纤维增强树脂复合材料纵向压缩强度和压缩失效形式的影响。   相似文献   

14.
Initiation and propagation of failure in uniaxially aligned 60% volume-fraction Type III carbon fibre-epoxide compressive specimens, strained parallel to the fibre axis, was studied at atmospheric and superposed hydrostatic pressures, H, extending to 300 MN m–2. The atmospheric axial compressive strength was approximately 1.5 GN m–2 and equal to the tensile strength, but mechanisms involving shear-operated failure of the fibres must be discounted since the failure process was very pressure sensitive above H 150 MN m–2. The results also could not be satisfactorily interpreted by theories involving micro-buckling of individual fibres or laminae when the matrix shear modulus controls the compressive strength. For atmospheric tests and for H<150 MN m–2 the initiation of failure was associated with transverse cracking (longitudinal splitting) which was followed by kinking. Ahead of the propagating kink band, groups of fractured fibres were observed, which is consistent with failure of these groups by buckling; this process causes composite catastrophic failure. At higher pressures splitting was suppressed, as was interlaminar cracking in doubly-notched (in-plane shear) specimens, but kinking, which became increasingly more difficult to initiate, was the precursor of the failure process. An attempt was made to analyse failure using the fracture mechanics model of Chaplin with some success for the notched specimens.  相似文献   

15.
This paper reviews and gives new insight into earlier work by the author and his co-workers on the experimental investigation of the influence of superimposed hydrostatic pressure on the mechanical behavior and properties of the epoxy used for the matrix and unidirectionally laminated, graphite-fiber/ epoxy-matrix thick composites. The direction of the fibers was, respectively, 0°, 45° and 90° for the compressive test samples and 0°, 45° -45° and 90° for the shear samples.

Hydrostatic pressure induces very significant, often dramatic changes in the compressive and shear stress/ strain behavior of composites, and consequently in the elastic, yielding, deformation and fracture properties. The range of pressures covered for the compressive experiments was 1 bar to 4 kbar, and for the shear tests 1 bar to 6 kbar. The shear modulus (G) of the epoxy increased bilinearly with pressure, with the break, or the discontinuity point, occurring at 2 kbar. The compressive elastic modulus (E) and the shear modulus (G) of the composites increase in the same manner as for the epoxy. The break, which is located at 2 kbar, represents a pressure at which physical changes in the molecular motion of the matrix epoxy occur. That is, segmental motion of molecules between the cross-links is frozen in by 2 kbar pressure. This pressure is known as the secondary glass transition pressure of the epoxy at room temperature. Alternatively, the sub-zero secondary glass transition temperature of the epoxy is shifted to ambient temperature by 2 kbar pressure. The increase in the moduli may also be given a mechanical interpretation. The elastic or shear modulus of an isotropic, elastic material due to small compressive or shear deformations, respectively, superimposed on a finite volume deformation, which is caused by hydrostatic pressure, increases with pressure. Such an increase in E or G has been predicted using finite deformation theory of elasticity.

The normally brittle epoxy develops yielding when the superimposed hydrostatic pressure exceeds 2 kbar. The shear yield stress (1% off-set) of the epoxy increases linearly with pressure above 2 kbar. This kind of yielding behavior can be predicted by a pressure-dependent yield criterion. The compressive yield strength of the 45° and 90° composites increases bilinearly with pressure, and the shear yield strength of the 0°, 45° and 90° composites also increases bilinearly with pressure. This bilinear behavior is also due to the secondary glass transition pressure of the matrix epoxy, being located at 2 kbar. The fracture strength of the composites also increases with pressure linearly and the greatest increase occurs in the 45° composite in compression and in the −45° composite in shear. The fracture modes of the composites undergo changes with increasing hydrostatic pressure. For instance, the 0° composite undergoes a brittle-ductile transition under shear stress, while no such transition appears to set in under compressive stress. The fracture mode of the 45° composite changes from matrix failure at lower pressures to fiber failure at high pressures under shear stress.  相似文献   


16.
First introduced over a decade ago, the Binary Model has evolved into a computationally efficient tool for predicting the properties of textile composites. Key to the formulation is the question of what details of the textile composite and the distributions of stress, strain, temperature, etc., are necessary and sufficient to represent the physics of the problem adequately and to ensure useful engineering predictions. This paper is concerned specifically with the prediction of the ultimate strength in cases where failure follows a single substantial local damage event, such as the rupture or kinking of a tow or the creation of a shear band mediated by matrix damage, without further increase in the external load. The accuracy of predictions is assessed for some triaxially braided carbon/epoxy composites. A gauge length is introduced that is suggested by the micromechanics of the failure mechanisms. Predictions are made by reference to strains that are averaged over a volume whose sides are commensurate with this gauge, but nevertheless retain spatial variations associated with the textile architecture. Failure criteria for tow rupture and matrix shear failure are taken from a single un-notched tensile test; the calibrated model then successfully predicts the failure mechanism (matrix shear or fiber rupture) and ultimate strength in un-notched and open-hole tension tests for any orientation of the textile fabric relative to the load axis, as well as bending and simple shear tests. The successful predictions are made using strains calculated for an entirely elastic representation of the material, which is possible because of the brittle character of the stress-strain curves. Predictions are also attempted using strains computed under the assumption that the textile material is homogeneous. These predictions are significantly inferior.  相似文献   

17.
A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static compressive loading model is generalized for the case of cyclic compressive loading, with and without microdegradation of the matrix, and with and without random variations of loading. It was observed that the random variations of loading shorten the lifetime of the composite: the larger the variability of applied load, the shorter the lifetime.  相似文献   

18.
基于连续损伤力学,建立了同时考虑复合材料剪切非线性效应和损伤累积导致材料属性退化的三维损伤本构模型。模型能够区分纤维损伤、基体损伤和分层损伤不同的失效模式,并定义了相应损伤模式的损伤变量。复合材料层合板层内纤维初始损伤采用最大应力准则判定,基体初始损伤采用三维Puck准则中的基体失效准则判定,分层初始损伤采用三维Hou准则中的分层破坏准则判定,为了计算Puck失效理论中的基体失效断裂面角度,本文提出了分区抛物线法,通过Matlab软件编写计算程序并进行分析。结果表明,与Puck遍历法和分区黄金分割法对比,本文提出的分区抛物线法有效地降低了求解断裂面角度的计算次数,提高了计算效率和计算精度。推导了本构模型的应变驱动显式积分算法以更新应力和解答相关的状态变量,开发了包含数值积分算法的用户自定义子程序VUMAT,并嵌于有限元程序Abaqus v6.14中。通过对力学行为展现显著非线性效应的AS4碳纤维/3501-6环氧树脂复合材料层合板进行渐进失效分析,验证了本文提出的材料本构模型的有效性。结果显示,已提出的模型能够较准确地预测此类复合材料层合板的力学行为及其失效强度,为复合材料构件及其结构设计提供一种有效的分析方法。   相似文献   

19.
CCF300/BMI composites are relevant materials for supersonic aircraft due to their high specific properties. However in aeronautical applications, the composites are exposed to severe environmental conditions, and it is known that hot and humid environments can degrade some aspects of the material performance especially the compressive strength. In this paper, the effect of moisture and temperature on the compressive failure of unidirectional CCF300 carbon fiber reinforced bismaleimide(BMI) matrix composites were studied. Also scanning electron microscope (SEM) was employed for fractographic investigations. It is observed that the plastic deformations at the fiber/matrix and interlaminar interface as well as residual stresses lower the compressive strength of the material. The failure of specimens tested in hot and wet conditions always occurs as a result of out-of-plane microbuckling that is attributed to the reduction of matrix strength. In addition, the fiber microbuckling model, fiber kinking model and combined model were employed for the compressive strength prediction of the UD CCF300/QY8911 composites subjected to different environment conditions. The comparison was done between these models. Results show that the combined model is more suitable for the compressive strength prediction of CCF300/QY8911 composite systems when suffering severe environment conditions.  相似文献   

20.
Biaxial stress tests of carbon fiber-reinforced plastic (CFRP) laminates were performed to investigate failure criteria under biaxial loads. Specimens of unidirectional CFRP laminates were subjected to a tensile load in the longitudinal fiber direction and a compressive load in the transverse fiber direction. An exclusive jig was used to perform biaxial stress tests with a commonly used single-axis testing machine. Measurements were obtained by controlling the displacement ratio between compressive and tensile displacements. The critical tensile and compressive stresses were then calculated using a constitutive equation. The critical longitudinal tensile stress markedly dropped with increasing the compressive load. The failure criteria of the biaxial stress tests were expressed as the ellipse, of which the major and minor axes were the longitudinal tensile/transverse compressive strengths or fracture strains, respectively. Scanning electron microscope observations suggest that fiber/matrix interfacial debonding due to the compressive load could decrease the critical longitudinal tensile stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号