首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 678 毫秒
1.
采用密度泛函理论的B3LYP方法、微扰论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了天门冬酰胺分子2个稳定构型的旋光异构裸反应机理、水分子的催化作用及水溶剂化效应.反应通道研究发现:构型1有2条通道a和b,a通道的第一基元反应质子迁移与羧基异构同时进行,是协同机理;b通道羧基先异构而后质子迁移,是分步机理.构型2有1条通道,是质子先以氨基氮为桥从手性碳的一侧迁移到另一侧,然后羧基和氨基再异构.势能面计算表明:构型1的主反应通道是b,决速步自由能垒为252.7kJ·mol~(-1);构型2的决速步自由能垒为254.0kJ·mol~(-1),均来自于质子从手性碳向氨基氮迁移的过渡态.2个水分子作质子迁移媒介时,构型1主反应通道b的决速步能垒降到124.1kJ·mol~(-1),再考虑到水溶剂化效应时,决速步能垒降到104.0kJ·mol~(-1).结果表明:水分子的催化和水溶剂助催化的共同作用,使质子迁移反应能垒大幅度降低.  相似文献   

2.
采用密度泛函理论的B3LYP方法和微扰理论的MP2方法,对苯丙氨酸分子的3种最稳定构型基于氨基做质子迁移桥梁的旋光异构进行研究.反应通道研究发现:标题反应有3条通道a、b和c.对于构型1和3,a是羧基异构后手性碳上的质子再以氨基为桥迁移,b是手性碳上的质子直接以氨基为桥迁移,c是手性碳上的质子以羧基和氨基联合为桥迁移.对于构型2,3条通道分别是质子只以氨基、顺次以羰基与氨基和顺次以羧基和氨基为桥迁移;势能面计算表明:构型1,3的主反应通道都是a,决速步是第2基元反应,活化吉布斯自由能垒分别为256.7kJ·mol~(-1)和263.4kJ·mol~(-1),由羧基异构后质子从手性碳向氨基氮迁移的过渡态产生.构型2的主反应通道也是a,决速步是第1基元反应,活化吉布斯自由能垒为256.5kJ·mol~(-1),由质子从手性碳向氨基氮迁移的过渡态产生;3种构型的苯丙氨酸分子旋光异构速控步骤的反应速率常数分别为6.27×10-33 s~(-1),6.79×10-33s~(-1)和4.20×10-34s~(-1).  相似文献   

3.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了3种最稳定构型的酪氨酸分子的手性转变机理及水溶剂化效应。研究发现标题反应均有3条通道a、b和c。对于构型1和2,分别是手性碳上的质子在羧基顺反异构后以氨基、直接以氨基和羧基与氨基联合为桥迁移。对于构型3,分别是手性碳上的质子只以氨基、羰基与氨基联合以及羧基内氢迁移后再以氨基为桥迁移。势能面计算表明:构型1和2的主反应通道都是a,决速步自由能垒分别为257.0和264.0 k J·mol-1,构型3的主反应通道是a和c,决速步自由能垒分别为257.4和257.0 k J·mol-1,它们均来源于质子从手性碳向氨基氮迁移的过渡态。水溶剂效应使构型1的主反应通道决速步能垒降到113.1 k J·mol-1。结果表明:单体酪氨酸分子具有稳定性;水溶剂环境下酪氨酸的手性转变可以缓慢进行。  相似文献   

4.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了标题反应.势能面计算表明:标题反应的决速步骤均为第2基元反应,决速步能垒来自于质子从手性碳向氨基氮转移的过渡态.甲醇溶剂环境下构象1和2手性转变决速步的吉布斯自由能垒分别为109.8 kJ·mol~(-1)和111.0 kJ·mol~(-1),比气相甲醇环境下的决速步能垒134.2 kJ·mol~(-1)和130.8 kJ·mol~(-1)均有明显降低,比水环境下的决速步能垒122.5 kJ·mol~(-1)也明显降低,比裸环境下的决速步能垒266.1 kJ·mol~(-1)大幅降低,比限域在SWBNNT(5,5)内的决速步能垒为201.1 kJ·mol~(-1)也显著降低.结果表明:甲醇分子簇对α-丙氨酸分子的手性转变具有明显的催化作用,甲醇溶剂效应对质子从手性碳向氨基氮的转移反应具有较好的助催化作用.  相似文献   

5.
采用量子力学与分子力学组合的ONIOM方法,研究了两种构象的赖氨酸分子限域在螺旋手性单壁碳纳米管内的手性转变机理.结构分析表明:纳米管管径越小,限域在其中的赖氨酸分子骨架形变越明显,手性碳上的氢原子与氨基上氮的氮原子距离越小.势能面计算表明,两种构象的赖氨酸分子限域在SWCNT(6,4)时,旋光异构反应决速步的吉布斯自由能垒分别是194.72和170.08kJ·mol~(-1),分别由质子从手性碳向氨基氮和质子从手性碳向氨基氮与氨基上的质子向羰基氧双质子协同迁移的过渡态产生的.与裸反应的此通道决速步能垒252.6kJ·mol~(-1)相比较有显著降低.两种构象的赖氨酸分子限域在SWCNT(6,4)内旋光异构反应的表观能垒分别是160.00和178.59kJ·mol~(-1).他们限域在SWCNT(7,4)内时,旋光异构反应决速步的能垒分别是238.28和217.18kJ·mol~(-1);限域在SWCNT(8,4)内时,旋光异构反应决速步的能垒分别是253.00和250.11kJ·mol~(-1).结果表明:螺旋手性单壁碳纳米管的孔径越小,对赖氨酸分子手性转变反应的限域催化作用越好;限域在SWCNT(6,4)内的赖氨酸分子构象1更容易旋光异构.  相似文献   

6.
采用量子力学与分子力学组合的ONIOM方法,研究布洛芬限域在水与MOR分子筛复合环境的手性转变.结构研究表明:1,2个和3个水分子助氢迁移反应的过渡态分子氢键键角不断增大,3个水分子助氢迁移反应的10元环过渡态结构明显偏离平面.反应通道研究发现:标题反应有a1,a2和b三个通道.a1和a2是经过水助羧基内质子迁移和质子以新羰基氧为桥从手性碳向苯环迁移的共同历程后,再分别直接迁移到手性碳的另一侧和以新羰基氧为桥迁移到手性碳的另一侧;b是水助质子以羰基氧为桥从手性碳的一侧迁移到另一侧.势能面计算表明,a2是主反应通道,在2个水分子助质子迁移反应时,决速步吉布斯自由能垒被降到最低值124.3kJ·mol-1,与裸反应、限域在MOR分子筛和限域在水环境的此通道决速步能垒287.1,263.4kJ·mol-1和152.2kJ·mol-1相比较,均有明显降低.结果表明:水与MOR分子筛复合环境对布洛芬手性转变具有较好的共催化作用,可作为理想的实现布洛芬手性转变的纳米反应器.  相似文献   

7.
采用密度泛函理论的BP86-D3方法研究了Mn~(2+)催化丙氨酸转化反应的机理及催化活性.得到15个稳定构型和12个过渡态,最稳定构型的结合自由能为-710.8kJ·mol~(-1).Mn~(2+)可以催化丙氨酸发生质子迁移反应、手性转化反应、裂解失CO反应和裂解失H_2O反应;对应的吉布斯自由能垒分别为7.7kJ·mol~(-1)、78.7kJ·mol~(-1)、166.4kJ·mol~(-1)和225.2kJ·mol~(-1).丙氨酸质子迁移反应和手性转化反应通道的决速步基元反应相同,自由能垒是119.1kJ·mol~(-1),相应反应较易发生.丙氨酸裂解反应通道的最高自由能垒为225.2kJ·mol~(-1),反应较难发生.  相似文献   

8.
采用量子力学与分子力学组合的ONIOM方法,研究了布洛芬在MOR分子筛12元环孔道限域环境的手性转变.反应通道研究发现:标题反应有7条路径,质子从手性碳的一侧向另一侧迁移可分别以羰基、甲基和羰基联合、羧基以及羧基和苯环联合作桥实现.反应势能面计算发现:在羧基内实现质子迁移后,手性C上的质子以新羰基O为桥迁移到苯环,接着苯环上的质子又以羰基为桥在纸面里迁移到手性碳的手性转变过程是主反应路径.决速步骤是质子从手性碳向新羰基氧的迁移过程,决速步骤吉布斯自由能垒是263.4kJ·mol~(-1),相对于裸反应决速步骤的能垒287.1kJ·mol~(-1)有明显降低.结果表明:MOR分子筛12元环孔道对布洛芬的手性转变反应具有限域催化作用.  相似文献   

9.
采用密度泛函理论的M06方法研究了Na~+催化丙氨酸(Ala)分子的手性对映体转变.反应通道研究发现:Ala_1(Ala的稳定构型1)的手性转变有a、b、c和d 4个通道,a通道是羧羟基氢迁移后α-氢以羰基氧为桥迁移,b通道是羧羟基氢迁移后α-氢向羰基氧迁移再接质子从质子化氨基向α-碳迁移,c和d通道是α-氢分别以氨基氮和羰基氧为桥迁移.Ala_2(Ala的稳定构型2)的手性转变有2个通道a和b,a通道是α-氢只以羰基氧为桥迁移,b通道是α-氢迁移到羰基氧后氨基上的质子再向α-碳迁移.势能面计算结果表明:Ala_1手性转变的a和b通道具有优势,反应的总包能垒(反应活化能)是125.4kJ·mol~(-1).Ala_2手性转变的a通道具有优势,反应的总包能垒(反应活化能)是200.0kJ·mol~(-1).结果表明:气相环境下Na~+的催化可显著地降低Ala实现手性转变的能垒.  相似文献   

10.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法及自洽反应场(SCRF)理论的SMD模型方法,研究两种最稳定构型色氨酸分子手性转变的反应机理及水溶剂化效应.结果表明:两种构型的色氨酸分子均有3条手性转变通道a,b,c;构型1的主反应通道为通道a,决速步骤自由能垒为256.7kJ/mol,构型2的主反应通道为通道a和c,决速步骤自由能垒分别为258.8,256.7kJ/mol,决速步骤能垒均来自于质子从手性C向氨基N迁移的过渡态;水溶剂效应使构型1的主反应通道决速步骤能垒降至113.4kJ/mol;单体色氨酸分子具有稳定性,水溶剂环境下色氨酸分子的手性转变可以缓慢进行.  相似文献   

11.
采用密度泛函理论的B3LYP方法和微扰理论的MP2方法,研究两种最稳定构型的蛋氨酸分子(Met)基于氨基作为质子迁移桥梁的旋光异构反应.结果表明:基于氨基作为质子迁移桥梁的蛋氨酸分子旋光异构反应有2条通道a和b;构型1的主反应通道为通道a,决速步骤为第1基元反应,自由能垒为264.2kJ/mol,由质子从手性C直接向氨基N迁移的过渡态产生;构型2的主反应通道也为通道a,决速步骤为第2基元反应,自由能垒为266.1kJ/mol,由羧基异构后质子从手性C向氨基N迁移的过渡态产生;两种构型的Met分子旋光异构速控步骤的反应速率常数分别为3.04×10~(-34),1.41×10~(-34) s~(-1).  相似文献   

12.
在MP2/6 311++G(3-df,2pd-)//WB97X-D/6-311++G(-d,p-)双水平研究苯丙氨酸(Phe)分子的手性对映体转变机理, 并用分子中的原子理论(AIM)分析驻点的成键特征. 结果表明: 经过羧羟基旋转、 质子迁移、 碳 碳键旋转和氨基翻转的一系列过渡态, Phe分子在质子以氨基氮为桥梁迁移的通道a和以羰基氧与氨基氮顺次为桥梁迁移的通道b内, 实现了手性对映体转变; 当2个水分子簇作为质子迁移媒介时, 在通道b中增加了质子仅以羰基氧为桥梁迁移的反应路径; 通道a具有优势, 速控步骤的内禀能垒为25971 kJ/mol, 反应的表观能垒为27026 kJ/mol; 2个水分子簇催化使速控步骤的内禀能垒降至126.47 kJ/mol, 反应的表观能垒降至80.80 kJ/mol; 考虑零点振动能后, 质子从氨基氮向羰基氧迁移的能垒消失. 即水分子(簇)催化可使Phe分子实现手性对映体转变.  相似文献   

13.
在MP2/6 311++G(3-df,2pd-)//WB97X-D/6-311++G(-d,p-)双水平研究苯丙氨酸(Phe)分子的手性对映体转变机理, 并用分子中的原子理论(AIM)分析驻点的成键特征. 结果表明: 经过羧羟基旋转、 质子迁移、 碳 碳键旋转和氨基翻转的一系列过渡态, Phe分子在质子以氨基氮为桥梁迁移的通道a和以羰基氧与氨基氮顺次为桥梁迁移的通道b内, 实现了手性对映体转变; 当2个水分子簇作为质子迁移媒介时, 在通道b中增加了质子仅以羰基氧为桥梁迁移的反应路径; 通道a具有优势, 速控步骤的内禀能垒为25971 kJ/mol, 反应的表观能垒为27026 kJ/mol; 2个水分子簇催化使速控步骤的内禀能垒降至126.47 kJ/mol, 反应的表观能垒降至80.80 kJ/mol; 考虑零点振动能后, 质子从氨基氮向羰基氧迁移的能垒消失. 即水分子(簇)催化可使Phe分子实现手性对映体转变.  相似文献   

14.
采用密度泛函理论的B3LYP方法,微扰理论的MP2方法及自洽反应场(SCRF)理论的SMD模型方法,研究两种稳定构型谷氨酸分子的手性转变及水溶剂化效应.结果表明:构型1的优势通道为通道a和通道b,决速步骤自由能垒分别为242.3,245.7kJ/mol;构型2的优势通道为通道a,决速步骤自由能垒为243.5kJ/mol;决速步骤能垒均由质子从手性C向氨基N迁移的过渡态产生;水溶剂化效应使构型1的优势通道决速步骤自由能垒降至101.5kJ/mol;决速步骤的反应速率常数在298.15K时为1.002×10~(-5)s~(-1),在310.00K时为3.802×10~(-5)s~(-1).可见谷氨酸分子在生命体内富水环境下可缓慢地实现旋光异构.  相似文献   

15.
用色散校正密度泛函WB97X D方法、 微扰理论的MP2方法和自洽反应场的SMD模型方法, 研究两种天冬氨酸(Asp)分子在优势反应通道的手性对映体转变、 水分子催化及溶剂效应. 结果表明: Asp分子经α 羧羟基、 β 羧羟基、 β 羧基和R 基旋转及质子从α 碳向氨基氮、 质子从氨基氮向α 碳和羧基内质子迁移的一系列过渡态, 实现了手性对映体转变, 并得到几种不同构型的旋光异构产物; 具有2条较强单氢键和2条中等强度单氢键的Asp分子在优势通道旋光异构的内禀能垒分别为258.5,253.8 kJ/mol, 均来自α 氢向氨基氮迁移的过渡态; 2个水分子簇的催化使其能垒分别降至133.3,134.3 kJ/mol, 水溶剂环境下分别降至106.3,107.8 kJ/mol. 表明水分子簇的催化可使Asp分子缓慢实现手性对映体转变, 水溶剂化效应可加快反应速度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号