首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 205 毫秒
1.
为了获得安全性能较好的压装高聚物粘结炸药(PBX),以3-硝基-1,2,4-三唑-5-酮(NTO)和奥克托今(HMX)为主体炸药,采用水悬浮法制备了NTO/HMX基压装PBX,测定了NTO在水中的溶解度,考察了水药比、搅拌速度对包覆效果的影响和主炸药粒度对撞击感度的影响,测定了产品的爆速。结果表明:NTO在水中的溶解度较大,在常温下制备,用NTO饱和水溶液代替水作分散介质;最佳工艺条件为:水药比(体积质量比)为1.6∶1,搅拌速度为500 r/min;主炸药粒度细化后产品的撞击感度下降了43%,只有15.3%;产品的爆速为8 200 m/s,达到了理论爆速的95%以上。  相似文献   

2.
采用溶剂/非溶剂法,在超声辅助的情况下,制备了TATB/HMX共晶炸药;探究了TATB/HMX共晶技术的影响因素;计算了TATB/HMX共晶炸药的理论密度和理论爆速;采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和差示扫描热量法(DSC)对其进行表征和热分析,并测试了其撞击感度。结果表明,制备TATB/HMX共晶的最佳工艺条件为:以[Emim]Ac/DMSO为复合溶剂,TATB和HMX投料比(摩尔比)为3∶7,温度为80℃,搅拌速率为500r/min;与原料相比,TATB/HMX共晶分子在结构上发生改变;TATB/HMX共晶炸药颗粒大小约为2μm,形貌为六边形晶体;共晶炸药的热安定性优于原料HMX,其特性落高比原料HMX高74cm,撞击感度明显降低;理论密度为1.891g/cm~3,理论爆速为8.758km/s,表明其爆炸性能良好。  相似文献   

3.
为降低HMX的机械感度并保持其爆轰性能,采用溶液-水悬浮包覆法,利用4,10-二硝基-2,6,8,12-四氧杂-4,10-二氮杂四环[5.5.0.0~(5,9).0~(3,11)]十二烷(TEX)和氟橡胶F_(2603)对HMX进行包覆降感;考察了TEX与HMX的粒度级配、主炸药质量比以及黏结剂用量对包覆炸药感度的影响;观察了TEX/HMX包覆炸药的微观形貌,测试其晶型结构、撞击感度、摩擦感度和爆速等参数,并进行了对比分析。结果表明,TEX可在HMX的表面形成保护层;黏结剂F_(2603)质量分数3%时为最佳用量,且包覆后HMX的晶型保持不变,仍为β型;超细TEX(d_(50)=4.532μm)和HMX(d_(50)=10.234μm)粒度级配下的降感效果最好,与原料HMX相比,TEX/HMX(质量分数30%TEX)混合炸药的撞击感度和摩擦感度分别降低了48%和68%,在装药密度为1.72g/cm~3时的实测爆速可达到7 932m/s。  相似文献   

4.
为了提高TNT/HMX熔铸炸药的装药质量,将HMX进行微/纳米粒度级配后应用于TNT基熔铸炸药中。分别采用场发射扫描电子显微镜(FESEM)和固体密度排水法研究了HMX微/纳米粒度级配对TNT/HMX(质量比为40∶60)熔铸炸药的微观结构与密度均一性的影响;测试了含不同HMX微/纳米粒度级配的TNT基熔铸炸药的抗压强度、抗拉强度、撞击感度、摩擦感度和爆速。结果表明,与采用单一粗颗粒HMX(d_(50)=100μm)所制备的TNT基熔铸炸药相比,当采用质量分数15%纳米级HMX(d_(50)=100nm)、15%微米级HMX(d_(50)=5μm)、70%粗颗粒HMX(d_(50)=100μm)时,制备的TNT基熔铸炸药药柱内部缺陷少,密度均一性好,抗压强度提高200%,抗拉强度提高128%,撞击感度降低45.5%,摩擦感度降低46%,爆速增加32m/s,表明综合性能得到明显提高。  相似文献   

5.
为研究炸药爆轰参数与空中爆炸冲击波超压之间的关系,设计了不同铝含量的RDX/Al、HMX/Al混合炸药,并进行了空中爆炸试验。根据爆炸相似理论,用相同条件下实测TNT超压数据,计算了冲击波超压的TNT当量。采用不同方法计算了炸药的爆轰参数。结果表明,炸药空中爆炸冲击波超压与爆热、爆容和爆速乘积TNT当量的1/3次方满足线性关系,且回归线在y轴上的截距为0,斜率与炸药的类型有关。对于TNT,斜率为1;对于RDX/Al混合炸药,斜率为1.053(R2=0.9996);对HMX/Al混合炸药,斜率为1.073(R2=0.9995),表明炸药的爆热、爆速和爆容对空中爆炸冲击波超压的影响相同。  相似文献   

6.
为了研究老化对炸药性能的影响,对自然贮存的3种熔铸炸药TNT/RDX、TNT/RDX/Al和TNT/HMX/Al进行了加速老化试验。通过扫描电镜、真空安定性试验研究了老化前后3种炸药的微观形貌和安全性能,并测试了老化前后3种炸药的感度和爆速。结果表明,老化后炸药颜色变深,体积膨胀,质量变轻。样品的放气量小于2mL/g,热感度变化也较小。机械感度的变化与炸药组分和老化方式有关。TNT/RDX的爆速随着贮存时间的增加而降低,与整体加速老化情况一致,TNT/RDX/Al和TNT/HMX/Al的爆热随贮存时间的增加变化趋势相反,说明两者老化机理可能不同。  相似文献   

7.
为了研究老化对炸药性能的影响,对自然贮存的3种熔铸炸药TNT/RDX、TNT/RDX/Al和 TNT/HMX/Al进行了加速老化试验。通过扫描电镜、真空安定性试验研究了老化前后3种炸药的微观形貌和安全性能,并测试了老化前后3种炸药的感度和爆速。结果表明,老化后炸药颜色变深,体积膨胀,质量变轻。样品的放气量小于2 mL/g ,热感度变化也较小。机械感度的变化与炸药组分和老化方式有关。TNT/RDX的爆速随着贮存时间的增加而降低,与整体加速老化情况一致,TNT/RDX/Al和 TNT/HMX/Al的爆热随贮存时间的增加变化趋势相反,说明两者老化机理可能不同。  相似文献   

8.
以HMX硝酸酯炸药配方为基础,用六硝基六氮杂异伍兹烷(CL-20)部分替代HMX,计算了含CL-20的硝酸酯炸药的密度、爆热和爆速,并与测试结果进行了对比;测试了其机械感度。结果表明,随着CL-20含量的增加,硝酸酯炸药的实测密度、爆热、爆速均明显增加;当CL-20质量分数为50%时,硝酸酯炸药的实测密度、爆热和爆速分别为1.907g/m3、6 826J/g和9 125m/s,撞击感度由34%提高到40%,摩擦感度由28%提高到60%。  相似文献   

9.
超细ANPyO/HMX混晶炸药的制备与性能   总被引:1,自引:0,他引:1  
为提高超细ANPyO/HMX的能量输出,采用溶剂/非溶剂法和水悬浮法制备了超细ANPyO/HMX混晶炸药。用SEM、XRD、红外光谱对其结构进行表征,并测试了其比表面积、真空安定性、撞击感度、冲击波感度、爆速和飞片起爆感度。结果表明,XRD和红外光谱特征峰的位移现象说明超细混晶炸药中ANPyO分子的氨基与HMX分子的硝基形成了分子间氢键;ANPyO/HMX混晶炸药(ANPyO与HMX质量比为70∶30)撞击感度为138cm,真空安定性为1.72mL/g(200℃)和4.50mL/g(250℃)。装药密度为1.84g/cm3时,混晶炸药冲击波感度为7.1mm,爆速为8 080m/s,最低起爆电压为2.91kV,是一种感度适中、易于被短脉冲起爆、能量输出高的超细混晶炸药。  相似文献   

10.
为探索硼铝复合粉在热固PBX中的应用,以HMX为基,加入氧化剂高氯酸铵(AP)、硼铝复合粉和聚氨酯黏结剂,设计和制备了6种配方的含硼铝炸药;分别制备3种带壳体及3种不带壳体的Φ50mm含硼铝炸药柱;用弹簧探针法测试了无壳体药柱和带壳体药柱的爆速,分别用经验公式和相对凹坑深度法计算了爆压,讨论了硼铝复合粉含量对其爆轰性能的影响。结果表明,炸药GH-4、GH-5和GH-6用手工浇注成型,Φ50mm×150mm炸药柱密度在1.530~1.570g/cm3之间,爆速在6.900~7.400mm/μs之间,爆压约19GPa,适用于含硼铝炸药配方筛选;炸药PF-1、PF-2和PF-3用真空振动浇注成型,Φ50mm×110mm炸药柱密度约1.693g/cm3,爆速在7.800~8.000mm/μs之间,爆压约24GPa。炸药PF-3中含质量分数20%、硼铝质量比1∶1的复合粉,含金属炸药的组合效应使少量硼铝复合粉在反应区参加反应,其爆速和爆压值较其他配方高,表明弹簧探针法可作为炸药爆速测试的一种补充电测法,在无法实施铜箔探针法的情况下,可以考虑用弹簧探针法。  相似文献   

11.
研究了HMX基钝感炸药的机械感度.根据测试结果初步确定了反应装甲的装药配方,最终装药配方由改变模拟反应装甲上、下板的材料和厚度以及穿甲弹与反应装甲法线的夹角,用反应起始装药的引爆效果确定.结果表明,钝感炸药的撞击感度、摩擦感度均随HMX粒度的减小而降低,随钝感剂含量的增加而降低;反应装甲的装药配方为HMX97%、钝感剂3%.从理论上分析了炸药粒度变化对机械感度影响的机理,以及在穿甲弹参数和速度一定的条件下,反应装甲装药结构对冲击引爆的影响.  相似文献   

12.
The performance of detonation and underwater explosion (UNDEX) of a six‐formula HMX‐based aluminized explosive was examined by detonation and UNDEX experiments. The detonation pressures, detonation velocities, and detonation heat of HMX‐based aluminized explosive were measured. The reliability between the experimental results and those calculated by an empirical formula and the KHT code was verfied. UNDEX experiments were carried out on the propagation of a shock wave and a bubble pulse of a 1 kg cylindrical HMX‐based aluminized explosive underwater at a depth of 4.7 m. Based on the experimental results of the shock wave, the coefficients of similarity law equation for the peak pressure and attenuation time constant of shock wave were in acceptable agreement. The bubble motion during UNDEX was simulated using MSC.DYTRAN software, and the radius time curves of bubbles were determined. The effect of the aluminum/oxygen ratio on the performance of the detonation and UNDEX for an HMX‐based aluminized explosive was discussed.  相似文献   

13.
EAK基熔铸分子间炸药的能量和撞击感度   总被引:9,自引:0,他引:9  
通过水下爆炸试验研究了RDX和HMX对EAK基熔铸分子间炸药水下能量的影响。结果表明,RDX和HMX对EAK基混合炸药起到明显的增能作用,但对含铝和非含铝体系有不同的作用效果。爆速和撞击感度测定表明,EAK—RDX混合炸药爆轰的理想化程度和稳定性及撞击感度随RDX含量的增加而增加。从能量和撞击感度两个方面综合考虑,RDX的较佳加入量应为20%~30%。  相似文献   

14.
运用分子动力学方法,计算了1,3,5,7-四硝基-1,3,5,7-四氮环杂辛烷(HMX)分子、2,6-二氨基-3,5-二硝基-吡嗪-1-氧(ANPZO)分子以及HMX/ANPZO共晶分子的分子间作用力、结合能和内聚能密度。通过气相扩散法制备了HMX/ANPZO共晶炸药,用红外光谱(IR)、差示扫描量热(DSC)和X射线衍射(XRD)表征了其结构,并测试了其机械感度。结果表明,HMX/ANPZO共晶分子间的相互作用力大于HMX分子间以及ANPZO分子间的相互作用力。与HMX和ANPZO相比,HMX/ANPZO共晶炸药的晶体结构和热分解特性变化较大,特性落高为59cm,与HMX相比提高了96.7%;理论爆速达9 060m/s。  相似文献   

15.
The effect of the particle size of HMX in alloys with TNT on the synthesis of nanodiamonds in a detonation wave was studied experimentally. Mixtures with a TNT content of 40 to 90% and the specific surface area of HMX varied in the range of 5–510 m2/kg were investigated. For all mixtures, an increase in the particle size of HMX was found to lead to an increase in the yield of nanodiamonds with the maximum yield shift toward alloys with increased TNT content. The results are explained using a model based on the absence of thermodynamic equilibrium between the components of the heterogeneous explosive during detonation. __________ Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 2, pp. 79–84, March–April, 2008.  相似文献   

16.
The critical detonation diameter of industrial explosive charges is analyzed as a function of their state characteristics (composition, density, and structure) and the presence of a casing. The main reason for the increase in the critical diameter with increasing density of ammonium nitrate explosive charges is the reduction in the energy release rate in the chemical reaction zone of the detonation wave. The effect of the particle size of the components and the amount of the sensitizing component on the critical diameter of powdered and granular explosives fits into the concept of explosive combustion. An analytical formula for the critical detonation diameter of emulsion explosives is obtained which correctly describes experimental data. A possible mechanism of the effect of metal casings on the critical detonation diameter is considered for porous explosives whose detonation velocity is lower than the sound velocity in the casing.  相似文献   

17.
Explosive characteristics of aluminized HMX-based nanocomposites   总被引:1,自引:0,他引:1  
The explosive characteristics of HMX compositions doped with 15% Al (by weight) were studied experimentally. The detonation velocity, pressure and temperature profiles, the velocity of endwise acceleration of plates, and the heat of explosion of dense pressed samples were measured. The results were compared for compositions based on mechanical mixtures of initial micron-size particles of HMX with aluminum powders of various sizes and for nanocomposites. The addition of nanoaluminum reduces the detonation velocity to a greater degree than the addition of micron-size aluminum. The mechanical mixtures have close detonation velocities, whereas in composites containing different types of nanoaluminum, they differ by almost 200 m/sec. For all compositions, except for the most homogeneous nanocomposite, two-peak pressure profiles are observed. For charges of a composite and a mechanical mixture with nanoaluminum of the same type, the second peak pressures almost coincide but are reached in different times. At the same time, the peak pressure increases with decreasing aluminum particle size. The temperature profiles agree qualitatively with the pressure profiles. The velocity of endwise acceleration of plates depends linearly on the activity of the aluminum powder used. Nanocomposites and mechanical mixtures containing the same aluminum powder have close heats of explosion. Nanoaluminum is almost completely oxidized during calorimeter bomb tests, and the major factor determining the heat of explosion of the compositions with nanoaluminum is also the content of active metal in the aluminum powder. __________ Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 2, pp. 85–100, March–April, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号