首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
论文以藏嵩草草甸为研究对象,利用15N 同位素标记技术,野外原位定量研究高寒藏嵩草草甸7 个主要植物种对土壤有机氮(甘氨酸)和无机氮(铵态氮、硝态氮)的吸收,以证明不同植物对土壤氮素吸收的生态位分化特征。结果表明:① 高寒藏嵩草草甸7 种植物δ15N天然丰度值为0.840‰~5.015‰,变异范围为4.175‰,地上组织氮浓度为14.38~23.31g·kg-1;② 从7 种植物吸收土壤甘氨酸、铵态氮和硝态氮的比例看,草地早熟禾偏好吸收土壤有机态氮,其体内氮的36%来源于土壤甘氨酸。冷地早熟禾和雅毛茛吸收土壤无机氮的能力最强,其体内氮的41%~43%来源于铵态氮。溚草偏好吸收土壤硝态氮,其体内氮的35%来自于硝态氮。③ 优势植物藏嵩草、华扁穗草和黑褐苔草对15N-Gly、15N-NO3-15N-NH4+的吸收均较低,仅为0.085~0.475 μmol 15N·g-1 DW,表明这3 种莎草科植物不能有效吸收土壤中的甘氨酸和无机氮源。④ 高寒沼泽湿地生态系统中,不同植物种对土壤氮素的吸收存在差异和多元化的特点,其中莎草科植物对土壤氮的利用较低,而早熟禾、溚草禾本科牧草及双子叶植物雅毛茛以土壤无机氮和可溶性有机氮作为氮源。  相似文献   

2.
通过设施大棚内容积为1.5 m3的人工模拟池试验,研究了框式与传统旱伞草浮床对富营养河水氮素转化及微生物菌群的影响. 传统浮床是以聚乙烯泡沫板为载体,栽植陆生植物来削减水体氮磷和有机物质等,从而达到净化水质的效果. 框式浮床是以塑料镂空支架为载体,除种植陆生植物外还添加填料等组件的新型浮床. 结果表明:①2种浮床对水体中TN,NH4+-N和NO3--N均有显著的去除效果,其中框式浮床和传统浮床的NH4+-N去除率分别高达91%和86%,TN去除率也分别达到74%和64%,NO3--N去除率分别为49%和31%. ②2种浮床系统有效地提高了水体中微生物和氮循环细菌总数和种群数量,尤其是框式浮床不同时期均比空白对照高出2~3个数量级. ③氮循环细菌的数量跟水体氮素去除有显著相关性. 其中水体ρ(NH4+-N)和氨化菌数量呈显著正相关,ρ(NH4+-N)和硝化菌数量呈极显著负相关,ρ(NO3--N),ρ(TN)和反硝化菌数量之间呈极显著负相关. ④框式浮床的独特结构使之比传统浮床的去氮能力更强. 其中,填料系统吸附贡献率为8%,植物吸收的去氮贡献为16.5%,微生物系统脱氮则为75.5%;而传统浮床植物系统吸收贡献率为31.8%,微生物系统脱氮贡献率为68.2%. 说明浮床系统中植物吸收只是系统去氮的一种途径,微生物脱氮在2种浮床脱氮途径中占主导作用.   相似文献   

3.
模拟放牧改变了氮添加作用下高寒草甸生物量的分配模式   总被引:1,自引:0,他引:1  
高寒草甸是氮素匮乏的生态系统,氮添加和放牧都会显著改变土壤养分的有效性及高寒植物对养分的利用方式,从而影响群落生产力。为了认识氮沉降和放牧干扰对青藏高原高寒草甸的影响,在西藏当雄县高山嵩草草甸开展了氮添加及模拟放牧实验。在模拟放牧样地(G+N)和不放牧样地(NG+N)分别设置4个氮添加处理:0、 10、 20和40 kg N·hm-2·a-1,在生长季采用原位封顶埋管法测定净氮矿化速率,同时分析群落生物量分配与植物氮利用的相互关系。研究表明:氮添加与模拟放牧对植物的分配模式有不同的影响。在无放牧压力下,氮添加主要刺激植物地上部分的生长;在放牧压力下,氮添加更倾向于促进植物地下部分的生长。虽然剪草移走了15%~20%的地上生物量,但由于氮添加促进了植物的补偿生长,模拟放牧与不放牧处理的总生物量无显著差异,甚至前者高于后者。高寒草甸植物生物量分配对氮添加和模拟放牧的响应也体现在土壤供氮潜力的作用模式上,土壤净氮矿化速率在NG+N样地与植物地上生物量呈显著负相关,而在G+N样地与植物地下生物量呈显著负相关。这表明高寒草甸植物可以通过改变自身光合产物的分配模式来响应土壤养分状况和放牧干扰,在有效养分匮乏的高寒草甸添加氮素能够促进植物的补偿性生长。  相似文献   

4.
选择闽江河口典型短叶茳芏(Cyperus malaccensis)湿地为研究对象,基于野外原位氮(N)负荷增强模拟实验,探讨了不同氮负荷梯度下(NL0(对照处理):0 g·m-2·a-1;NL1(低氮处理):37.5 g·m-2·a-1;NL2(中氮处理):50 g·m-2·a-1;NL3(高氮处理):100 g·m-2·a-1)湿地植物-土壤系统硫分布及其转运特征.结果表明,不同氮负荷处理下湿地土壤的TS含量整体表现为NL3>NL2>NL0>NL1(p<0.05).相较于NL0处理,NL2和NL3处理下的TS平均含量分别增加了10.02%和37.25%,而在NL1处理下其值降低了38.07%.植被生态特征是影响不同氮负荷处理下土壤TS含量分布的共性因素,而高氮负荷处理下的土壤TS含量还受到pH和EC变化的影响.氮负荷增强条件下植物不同器官的TS含量均发生了明显变化,除NL3处理下根与茎的...  相似文献   

5.
研究氮添加与凋落物处理对土壤有机碳组分及酶活性的影响对调控人工林生态系统恢复具有重要意义.于海南岛西部橡胶林地开展野外微区模拟试验,采用二因素完全随机设计,设置4个氮水平[不施氮(CK,0 kg·hm-2·a-1,以N计,下同),低氮(LN,50 kg·hm-2·a-1),中氮(MN,100 kg·hm-2·a-1)和高氮(HN,200 kg·hm-2·a-1)]以及2种凋落物处理[凋落物去除(LR),凋落物保留(L)],分析0~10 cm和10~20cm土层的土壤理化性质、总有机碳(SOC)及其组分、酶活性等指标.结果表明,土壤pH随N添加量增加以及凋落物的去除呈显著降低的趋势(P <0.05).土壤NO3--N和NH4+-N含量随N添加的增加显著增加,N添加和凋落物处理对NO3-  相似文献   

6.
针对低污染水补给城市河湖景观水体后氮磷营养盐削减、COD波动的问题,构建了仿自然人工湿地和生物塘,通过开展动水和静水试验,研究湿地生态配置和水力停留时间对各水质指标的影响.结果表明,螺、蚌、浮游动物及浮叶植物对COD、BOD5具有明显的抑制作用,且浮叶植物能够实现TN的高效去除并提高有机氮的氨化作用,仿自然人工湿地建议为“沉水植物+挺水植物+浮游动物+螺、蚌+浮叶植物”的生态系统组合.在上游低污染来水条件下,建议仿自然人工湿地水力停留时间为7 d,沉水植物种植8丛·m-2,挺水植物种植5丛·m-2,浮叶植物8株·m-2,浮游生物塘中投放中华圆田螺1000 g·m-2,椭圆背角无齿蚌2只·m-2,以实现仿自然湿地对低污染水体碳氮协同调控.  相似文献   

7.
针对印染工业园生化尾水中生物难降解的有机氮难题,采用O3-SBBR(臭氧-序批式生物膜反应器)联合工艺进行深度处理.开展了影响因素实验、降解动力学和淬灭实验,测定了自由基种类、琥珀酸脱氢酶活性和脱氮功能基因.结果表明,适宜的臭氧氧化条件:pH为8.0~8.5、ρ(O3)为35.0 mg·L-1左右、 O3投加量(以O3/H2O计,下同)约为100.0 mg·L-1和反应时间为90.0~120.0 min.臭氧氧化生化尾水的有机氮符合拟一级动力学模型,最大速率常数k值为0.010 35 min-1[实验条件:pH为8.0、 O3投加量为150.0 mg·L-1和ρ(O3)为35.0 mg·L-1].臭氧氧化显著提高序批式生物膜反应器(SBBR)的脱氮性能,脱氮效率从19.8%(SBBR)提高到32.9%(O3  相似文献   

8.
在点源污染得到有效控制后,流域内农业面源污染逐渐成为了湖库氮、磷等营养物质外源输入的主要贡献者。本研究选取红枫湖流域农田土壤为研究对象,对其添加改良剂并种植植物来构建生物地球化学垒,并对其氮、磷拦截效应进行了综合评估。研究结果表明,添加Al2(SO4)3、CaCl2与钠基膨润土显著提高了土壤对NH+4-N、NO-3-N和磷的拦截率,降低其流失程度。其中,对土壤添加CaCl2改性钠基膨润土并种植植被构建的生物地球化学垒,对NH+4-N、NO-3-N和磷的综合拦截效果最佳,截留率分别为87%、95%、93%。而添加了FeSO4的土壤,NO-3-N的淋失程度增强,不宜选取。种植植物后,植物生长对土壤中氮和磷有一定的活化作用,导致模拟径流中NH  相似文献   

9.
浮床植物系统对池塘水体微生物的动态影响   总被引:14,自引:2,他引:12       下载免费PDF全文
在池塘水体中构建以空心菜为试验植物的浮床植物系统,研究了其对池塘水体中微生物的数量、分布以及氮循环的影响.结果表明,浮床植物系统可明显改变池塘不同水层中的细菌(如氮循环细菌)和真菌的数量,实现不同生理类群的微生物在水体同一水层的共存,促进了水体的氮循环,加强了水体的自净功能.该系统的净化效果与其面积有关,占池塘面积20%的浮床植物系统在试验80d 时,对TN、NH4+-N、NO2N、NO3--N 的去除率分别为39.4%,51.2%,49.7%和65.0%.  相似文献   

10.
人类活动背景下,氮(N)沉降持续影响着生态系统的碳循环.氮沉降对土壤有机碳的影响与不同碳组分的差异性响应有关.为探究短期氮沉降背景下土壤有机碳组分变化及其影响因素,基于野外氮添加试验,以刺槐人工林为研究对象,共设置4个氮添加梯度:0(CK)、1.5(N1)、3(N2)和6(N3) g·(m2·a)-1,分别在6月和9月进行取样,测定土壤理化性质、微生物生物量和酶活性.结果表明:(1)外源氮输入降低了土壤pH,促进可溶性有机碳含量的增加,增加了土壤氮素有效性.(2)短期氮添加显著降低了土壤有机碳含量,且有机碳各组分对氮添加响应不同.其中,易氧化有机碳含量显著降低,且在N2处理下达到最低,与对照相比分别降低了54.4%和48.2%,惰性有机碳含量增加,但增加不显著.氮添加降低了土壤碳库活度,提高了土壤碳库的稳定性.土壤碳库活度分别在N3和N2处理下达到最低,与对照相比分别降低了53.3%和52.80%.(3)随机森林模型表明,短期氮添加下土壤微生物生物量化学计量比、微生物生物量碳和AP是驱动土壤有机碳活度变化的关键因子,分别解释了易氧化有机碳和惰...  相似文献   

11.
土壤和大气中存在较多的氮,但大多以稳定态的有机氮和氮气形式存在,被植物生长利用的可获得性氮素较少。工业革命以来,人口数量剧烈增长及生活方式的改变带来的化石燃料燃烧、化肥施用和畜禽养殖等活动向大气中排放了大量活性氮,提高了植物可获得性氮水平,并影响到陆地生态系统氮循环和碳循环。长期的氮沉降在全球多个地区引起了氮饱和问题,使得全球工业发达地区及其周边陆地生态系统面临退化风险,我国所在的东亚地区逐步成为继欧洲和北美之后的第三大氮沉降区。严峻的事实及不断加重的氮沉降污染趋势,迫使我们亟需借鉴发达国家的经验以开展相关研究。文章综述了从20世纪80年代起在氮饱和研究中采用的多种氮饱和监测指标,涵盖了陆地生态系统土壤、植被、水体、气体等多个部分的最新进展。文章还总结了我国氮饱和研究的现状,并提出了一些改进措施,以期对我国开展氮沉降观测、氮沉降模拟实验及氮沉降控制有所借鉴。  相似文献   

12.
黄河口典型潮沟土壤碳氮分布特征规律   总被引:1,自引:0,他引:1  
为探究黄河三角洲盐沼土壤碳氮含量在潮沟水系中的时空分布特征,选取黄河口一条典型的潮沟系统,采集一、二、三级潮沟表层土壤,探寻土壤有机碳、总氮与土壤容重、盐度、pH等理化因子的相关关系。结果表明:土壤有机碳和总氮在时空尺度上表现出极大的异质性特征。时间尺度上,土壤有机碳和总氮出现先上升后下降的趋势。空间尺度上,一级潮沟土壤有机碳和总氮平均值(2.9 g·kg-1、0.36 g·kg-1)大于二级(1.4 g·kg-1、0.18 g·kg-1)、三级(1.6 g·kg-1、0.21 g·kg-1)潮沟。相关分析表明,土壤有机碳和总氮与盐度呈显著正相关(P<0.01),与容重呈显著负相关(P<0.01)。盐沼湿地土壤碳氮含量受土壤水盐条件的影响,而潮沟水系的树状结构对水盐条件的影响是导致土壤碳氮含量时空差异分布的重要因素。  相似文献   

13.
采用来自江苏和河北, 具有不同土壤有机质含量和NH4+浓度的土壤样本, 系统地研究了NH4+在热活化过硫酸盐(PS)氧化过程中的转化和归趋, 考察了反应时间、PS浓度和外加NH4+对硝基副产物生成的影响.结果表明, 土壤中的NH4+能够转化成3-硝基酚、4-硝基酚、2-羟基-5-硝基苯甲酸、4-羟基-3-硝基苯甲酸、2, 4-二硝基酚等副产物, 它们的生成量随着反应的进行先增加后降低.增大PS浓度可促进硝基副产物的生成.当PS浓度为30mmol/kg, 反应12h后一硝基酚和一硝基羟基苯甲酸的生成量达到最大.然而随着PS浓度进一步增大, 硝基副产物发生降解.硫酸根自由基(SO4·-)在硝化过程中起到了关键作用, 它能将NH4+氧化生成氨基自由基(·NH2), 随后经过一系列自由基链式反应生成二氧化氮自由基(NO2·).同时, SO4·-进攻土壤有机质中的酚结构单元, 使其氧化生成苯氧自由基, 苯氧自由基进一步与NO2·结合生成硝基副产物.天然有机质(NOM)在环境中无处不在, NH4+在环境中也普遍存在, PS用于土壤和地下水污染修复时生成硝基副产物很可能是一个普遍现象.  相似文献   

14.
氮添加对亚热带森林土壤有机碳氮组分的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究氮添加对森林土壤有机碳氮组分稳定性的影响,选取我国亚热带典型常绿阔叶林(浙江桂天然林和罗浮栲天然林)和针叶林(杉木人工林),开展为期5年的野外模拟氮沉降试验,分别设置对照〔0 kg/(hm2·a),以NH4NO3中的N计,下同〕、低氮〔75 kg/(hm2·a)〕和高氮〔150 kg/(hm2·a)〕3个氮添加水平,用H2SO4分2步酸水解获得LPⅠ(活性有机库Ⅰ)、LPⅡ(活性有机库Ⅱ)和RP(惰性有机库),定量研究土壤活性和惰性有机碳氮组分以及微生物生物量碳氮对氮添加的响应. 结果表明:氮添加仅对w(LPⅡ-C)(LPⅡ-C为活性有机碳Ⅱ)有显著影响,而对其他活性和惰性有机碳氮组分的影响不显著,并且对不同林分的影响存在差异. 与对照处理相比,低氮处理下浙江桂天然林、罗浮栲天然林和杉木人工林土壤w(LPⅡ-C)的增幅分别为15.3%、29.8%、68.8%;高氮处理下杉木人工林土壤w(LPⅠ-C)(LPⅠ-C为活性有机碳Ⅰ)、w(LPⅠ-N)(LPⅠ-N为活性有机氮Ⅰ)和w(RP-C)(RP-C为惰性有机碳)的增幅分别为32.4%、78.6%、28.7%;氮添加使得土壤w(SMB-C)(土壤微生物生物量碳)的增幅为18.1%~202.5%、w(SMB-N)(土壤微生物生物量氮)的增幅为0%~103.6%;在氮添加处理下,除杉木人工林土壤SMB-N/LPⅠ-N〔w(SMB-N)/w(LPⅠ-N)〕是随着氮添加水平的增加而降低外,微生物对其他林分土壤活性有机氮的利用均表现为随着氮添加水平的增加而增加. 研究显示,氮添加对阔叶林和针叶林土壤活性和惰性有机碳氮组分的影响存在差异,但差异不显著,这与它们归还土壤的凋落物性质差异有关,并且凋落物的分解差异也可能是影响土壤不同碳氮组分变化的原因.   相似文献   

15.
为研究天津市大气气溶胶中氮的来源,分析了2016年夏、冬两季昼夜采集的细颗粒物气溶胶(PM2.5)中无机离子浓度和氮同位素组成(δ15N).结果显示:天津市冬季平均PM2.5质量浓度(207 μg/m3)远高于夏季(40.1 μg/m3),冬季PM2.5δ15N值(+5.1‰)低于夏季(+10.7‰),即夏季PM2.5较冬季更富集15N;夏季PM2.5中NH4+的平均浓度高于c(NO3),但是冬季NO3浓度最高,其次是c(NH4+)>c(SO42–);此外,通过对比昼夜样品,夏季PM2.5中氮含量和氮同位素组成在昼夜均表现出明显差异,而冬季不明显.结果表明,天津市夏季气溶胶中含氮化合物在昼夜受海陆风的影响,即白天受海洋气溶胶影响较大而夜间则为陆源气溶胶物质影响,然而冬季受东亚季风的影响削弱了海陆风对海陆间大气气溶胶的交换作用,且在冬季化石燃料燃烧源氮贡献较大.  相似文献   

16.
通过原位实验,对浅埋深黏土包气带中氮的迁移转化开展研究.结果表明,实测地下水埋深介于145.9~173.6cm,地下水毛细上升高度计算值可达297.0cm,土壤含水率除表层外介于0.30~0.45cm3/cm3;NH4+-N和NO3--N在地面以下155cm含量最高为1.43,23.00mg/kg,超出背景值1.13,21.05mg/kg;包气带含水率近饱和条件下,粘土对氮污染物迁移阻滞作用减弱,NH4+-N和NO3--N在1d内自地表迁移至155cm.浅埋深地下水减弱了黏土对氮污染物运移的阻滞作用.浅埋深地下水减弱了黏土对氮污染物运移的阻滞作用.  相似文献   

17.
为了识别鄱阳湖湿地水体中硝酸盐污染的来源,转化特征和各污染来源的贡献比例,选取枯水期这一典型时期,于2019年1月份对鄱阳湖中的蚌湖湿地,沙湖山湿地和庐山湿地的地表水进行取样,并测定了水样中的离子组成和硝酸盐氮氧同位素值.研究结果显示, NO3-/Cl-物质的量浓度比值与Cl-浓度的关系表明3处湿地中硝酸盐来源可能受到农业活动和降雨的影响.蚌湖,沙湖山和庐山湿地水体中δ15N-NO3-δ18O-NO3-值的范围分别为-6.19‰~4.67‰和3.41‰~39.95‰,-4.14‰~1.45‰和31.54‰~68.30‰,-6.98‰~3.83‰和2.80‰~30.43‰,硝酸盐氮氧同位素值表明3处湿地硝酸盐来源可能受到降水NO3-,硝酸盐氮肥,氨态氮肥和土壤有机氮的影响.利用硝酸盐氮氧同位素之间的关系,并结合NO3-与Cl-比值关系判断湿地中无明显反硝化作用的发生.SIAR模型结果显示:蚌湖湿地,沙湖山湿地,庐山湿地硝酸盐来源中降水NO3-贡献占比最大,其次是化肥,土壤有机氮,粪便和生活污水贡献占比最小.  相似文献   

18.
千岛湖水体氮的垂向分布特征及来源解析   总被引:1,自引:0,他引:1  
选取千岛湖水深0.2,5,10,20,30和40m处水样进行分析,利用氮氧同位素和稳定同位素模型(SIAR)研究千岛湖水体氮(N)的垂向分布特征,分析水体N的来源并计算各N源的贡献率.结果表明,硝酸盐(NO3-)和溶解性有机氮(DON)是千岛湖水体总溶解氮(TDN)的主要形式,分别占溶解态N的57.9%和39.7%.千岛湖水体δ15N-NO3-和δ18O-NO3-的平均值分别为4.5‰和4.3‰.上层水体(0~10m)中,硝化作用和浮游植物的同化作用共同控制水体N的形态组成和氮氧同位素值(δ15N-NO3-和δ18O-NO3-)的变化.中层水体(10~30m)中,硝化作用是主要的生物地球化学过程,使得水体NO3-含量增加而δ18O-NO3-值减小.底层水体(30~40m)受到硝化作用、底泥N释放和反硝化作用的共同影响.化肥是千岛湖水体NO3-的最主要来源,在S1和S2处的贡献率分别为51.9%和30.6%.新安江上游的农业面源污染使得S1处化肥贡献率远高于S2.土壤N是仅次于化肥的第二大水体NO3-来源,在S1和S2处的贡献率分别为17.8%和27.8%.此外,底泥对底层水体NO3-的贡献不可忽视.  相似文献   

19.
为定性及定量识别地下水中氮的污染来源及迁移转化特征,本文在水化学分析的基础上结合氮氧稳定同位素技术及SIAR模型对渭河流域关中段地下水补给来源、地下水中氮污染特征进行了判断.结果表明,渭河流域关中段地下水的主要水化学类型为HCO3-Ca+Mg型,地下水由降水快速入渗补给和地表水入渗补给.地下水氮污染以硝态氮形式为主,在所采集的34个地下水水样中,硝态氮含量的变化范围为0.154~36.717mg/L,平均含量为6.17mg/L,其中硝态氮含量超过Ⅲ类地下水标准的采样点共有2个,超标率为5.9%.氮循环的主导作用为硝化作用.地下水δ15N-NO3-含量的变化范围为+6.08‰~+16.42‰,δ15O-NO3-含量的变化范围为+9.38‰~+12.514‰,硝态氮污染主要受到人类活动的影响,土壤有机氮、粪便及污废水和大气沉降是地下水硝态氮的主要贡献者,平均贡献率分别为44.65%、40.03%和15.32%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号