首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang-lian-jie-du-tang (HLJDT), a traditional Chinese medicine, has been shown to improve insulin resistance (IR) induced by inflammation, a key event in the development of metabolic syndrome (MS). The present study aimed to investigate the protective effects of HLJDT on MS and explore the underlying mechanism. MS rats were established with obese-diets and treated with normal saline, aspirin or HLJDT. The myocardial lesions were identified by echocardiogram, transmission electron microscope, and Sirius-red staining. The inflammatory cytokines were measured by ELISA and real-time PCR. The activation of NF-κB, JNK, SOCS3, IRS1 and AKT in the heart was detected by immunohistochemistry and Western blot analysis. Compared with the controls, MS rats developed obvious obesity, hypertension, dyslipidemia, IR, inflammation, and cardiac damage. Moreover, phosphorylated IRS-1 at Ser307 was correlated with the activation of NF-κB, JNK and SOCS3 and the inhibition of AKT in the heart from MS rats. These data suggest that serine phosphorylation of IRS-1 in response to inflammation is mediated, in part, by NF-κB, JNK and SOCS3. Notably, HLJDT inhibited the activation of NF-κB and reduced serine phosphorylation of IRS-1. In summary, HLJDT protects myocardium from IR-mediated injury by inhibiting serine phosphorylation of IRS-1 in MS rats.  相似文献   

2.
DHEA improves insulin sensitivity and has anti-obesity effect in animal models and men. However, the molecular mechanisms by which DHEA improves insulin action have not been clearly understood. In the present study, we examined the protein levels and phosphorylation state of insulin receptor (IR), IRS-1 and IRS-2, the association between IRSs and PI3K and SHP2, the insulin-induced IRSs associated PI 3-kinase activities, and the phosphorylation status of AKT and atypical PKCzeta/lambda in the liver and the muscle of 6 month-old Wistar rats treated with DHEA. There was no change in IR, IRS-1 and IRS-2 protein levels in both tissues of treated rats analysed by immunoblotting. On the other hand, insulin-induced IRS-1 tyrosine phosphorylation was increased in both tissues while IRS-2 tyrosyl phosphorylation was increased in liver of DHEA treated group. The PI3-kinase/AKT pathway was increased in the liver and the PI3K/atypical PKCzeta/lambda pathway was increased in the muscle of DHEA treated rats. These data indicate that these regulations of early steps of insulin action may play a role in the intracellular mechanism for the improved insulin sensitivity observed in this animal model.  相似文献   

3.
Melatonin is the pineal hormone that acts via a pertussis toxin-sensitive G-protein to inhibit adenylate cyclase. However, the intracellular signalling effects of melatonin are not completely understood. Melatonin receptors are mainly present in the suprachiasmatic nucleus (SCN) and pars tuberalis of both humans and rats. The SCN directly controls, amongst other mechanisms, the circadian rhythm of plasma glucose concentration. In this study, using immunoprecipitation and immunoblotting, we show that melatonin induces rapid tyrosine phosphorylation and activation of the insulin receptor beta-subunit tyrosine kinase (IR) in the rat hypothalamic suprachiasmatic region. Upon IR activation, tyrosine phosphorylation of IRS-1 was detected. In addition, melatonin induced IRS-1/PI3-kinase and IRS-1/SHP-2 associations and downstream AKT serine phosphorylation and MAPK (mitogen-activated protein kinase) phosphorylation, respectively. These results not only indicate a new signal transduction pathway for melatonin, but also a potential cross-talk between melatonin and insulin.  相似文献   

4.
The effect of dehydroepiandrosterone (DHEA) on pancreatic islet function of aged rats, an animal model with impaired glucose-induced insulin secretion, was investigated. The following parameters were examined: morphological analysis of endocrine pancreata by immunohistochemistry; protein levels of insulin receptor, IRS-1, IRS-2, PI 3-kinase, Akt-1, and Akt-2; and static insulin secretion in isolated pancreatic islets. Pancreatic islets from DHEA-treated rats showed an increased beta-cell mass accompanied by increased Akt-1 protein level but reduced IR, IRS-1, and IRS-2 protein levels and enhanced glucose-stimulated insulin secretion. The present results suggest that DHEA may be a promising drug to prevent diabetes during aging.  相似文献   

5.

Background

Pharmacological inhibition of arginase and remote ischemic perconditioning (RIPerc) are known to protect the heart against ischemia/reperfusion (IR) injury.

Purpose

The objective of this study was to investigate whether (1) peroxynitrite-mediated RhoA/Rho associated kinase (ROCK) signaling pathway contributes to arginase upregulation following myocardial IR; (2) the inhibition of this pathway is involved as a cardioprotective mechanism of remote ischemic perconditioning and (3) the influence of diabetes on these mechanisms.

Methods

Anesthetized rats were subjected to 30 min left coronary artery ligation followed by 2 h reperfusion and included in two protocols. In protocol 1 rats were randomized to 1) control IR, 2) RIPerc induced by bilateral femoral artery occlusion for 15 min during myocardial ischemia, 3) RIPerc and administration of the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA), 4) administration of the ROCK inhibitor hydroxyfasudil or 5) the peroxynitrite decomposition catalyst FeTPPS. In protocol 2 non-diabetic and type 1 diabetic rats were randomosed to IR or RIPerc as described above.

Results

Infarct size was significantly reduced in rats treated with FeTPPS, hydroxyfasudil and RIPerc compared to controls (P<0.001). FeTPPS attenuated both ROCK and arginase activity (P<0.001 vs. control). Similarly, RIPerc reduced arginase and ROCK activity, peroxynitrite formation and enhanced phospho-eNOS expression (P<0.05 vs. control). The cardioprotective effect of RIPerc was abolished by L-NMMA. The protective effect of RIPerc and its associated changes in arginase and ROCK activity were abolished in diabetes.

Conclusion

Arginase is activated by peroxynitrite/ROCK signaling cascade in myocardial IR. RIPerc protects against IR injury via a mechanism involving inhibition of this pathway and enhanced eNOS activation. The beneficial effect and associated molecular changes of RIPerc is abolished in type 1 diabetes.  相似文献   

6.
7.
Activated insulin receptor (IR) interacts with its substrates, IRS-1, IRS-2, and Shc via the NPXY motif centered at Y960. This interaction is important for IRS-1 phosphorylation. Studies using the yeast two-hybrid system and sequence identity analysis between IRS-1 and IRS-2 have identified two putative elements, the PTB and SAIN domains, between amino acids 108 and 516 of IRS-1 that are sufficient for receptor interaction. However, their precise function in mediating insulin's bioeffects is not understood. We expressed the PTB and SAIN domains of IRS-1 in HIRcB fibroblasts and 3T3-L1 adipocytes utilizing replication-defective adenoviral infection to investigate their role in insulin signalling. In both cell types, overexpression of either the PTB or the SAIN protein caused a significant decrease in insulin-induced tyrosine phosphorylation of IRS-1 and Shc proteins, IRS-1-associated phosphatidylinositol 3-kinase (PI 3-K) enzymatic activity, p70s6k activation, and p44 and p42 mitogen-activated protein kinase (MAPK) phosphorylation. However, epidermal growth factor-induced Shc and MAPK phosphorylation was unaffected by the overexpressed proteins. These findings were associated with a complete inhibition of insulin-stimulated cell cycle progression. In 3T3-L1 adipocytes, PTB or SAIN expression extinguished IRS-1 phosphorylation with a corresponding 90% decrease in IRS-1-associated PI 3-K activity. p70s6k is a downstream target of PI 3-K, and insulin-stimulated p70s6k was inhibited by PTB or SAIN expression. Interestingly, overexpression of either PTB or SAIN protein did not affect insulin-induced AKT activation or insulin-stimulated 2-deoxyglucose transport, even though both of these bioeffects are inhibited by wortmannin. Thus, interference with the IRS-1-IR interaction inhibits insulin-stimulated IRS-1 and Shc phosphorylation, PI 3-K enzymatic activity, p70s6k activation, MAPK phosphorylation and cell cycle progression. In 3T3-L1 adipocytes, interference with the IR-IRS-1 interaction did not cause inhibition of insulin-stimulated AKT activation or glucose transport. These results indicate a bifurcation or subcompartmentalization of the insulin signalling pathway whereby some targets of PI 3-K (i.e., p70s6k) are dependent on IRS-1-associated PI 3-K and other targets (i.e., AKT and glucose transport) are not. IR-IRS-1 interaction is not essential for insulin's effect on glucose transport, and alternate, or redundant, pathways exist in these cells.  相似文献   

8.
Insulin rapidly stimulates protein synthesis in a wide variety of tissues. This stimulation is associated with phosphorylation of several translational initiation and elongation factors, but little is known about the signaling pathways to these events. To study these pathways, we have used a myeloid progenitor cell line (32D) which is dependent on interleukin 3 but insensitive to insulin because of the very low levels of insulin receptor (IR) and the complete lack of insulin receptor substrate (IRS)-signaling proteins (IRS-1 and IRS-2). Expression of more IR permits partial stimulation of mitogen-activated protein kinase by insulin, and expression of IRS-1 alone mediates insulin stimulation of the 70-kDa S6 kinase (pp70S6K) by the endogenous IR. However, expression of both IR and IRS-1 is required for stimulation of protein synthesis. Moreover, this effect requires activation of phosphatidylinositol 3-kinase (PI3K), as determined by wortmannin inhibition and the use of an IRS-1 variant lacking all Tyr residues except those which activate PI3K. Stimulation of general protein synthesis does not involve activation by IRS-1 of GRB-2-SOS-p21ras or SH-PTP2, since IRS-1 variants lacking the SH2-binding Tyr residues for these proteins are fully active. Nor does it involve pp70S6K, since rapamycin, while strongly inhibiting the synthesis of a small subset of growth-regulated proteins, only slightly inhibits total protein synthesis. Recruitment of mRNAs to the ribosome is enhanced by phosphorylation of eIF4E, the cap-binding protein, and PHAS-I, a protein that specifically binds eIF4E. The behavior of cell lines containing IRS-1 variants and inhibition by wortmannin and rapamycin indicate that the phosphorylation of both proteins requires IRS-1-mediated stimulation of PI3K and pp70S6K but not mitogen-activated protein kinase or SH-PTP2.  相似文献   

9.
目的研究2型糖尿病大鼠心肌胰岛素信号转导通路蛋白胰岛素受体(IR)、胰岛素受体底物-1(IRS-1)的表达与正常SD大鼠的区别,并探讨进行罗格列酮及APP5肽类似物P165干预后对上述蛋白表达的影响。方法60只SD大鼠随机分为正常对照组(C组)、正常对照+罗格列酮组(C+RSG组)、2型糖尿病组(T2DM组)、2型糖尿病+罗格列酮组(T2DM+RSG组)、糖尿病给予P165小剂量组(T2DM+P165小剂量组)、糖尿病给予P165大剂量组(T2DM+P165大剂量组),其中糖尿病动物采用高脂饮食后给予小剂量STZ腹腔注射的方法造模。后将各组SD大鼠处死,采用免疫组织化学染色和Western blot的方法检测心肌组织IR、IRS-1的表达。结果(1)2型糖尿病组(T2DM组)心肌组织IR、IRS-1的表达水平显著低于对照组(C组);(2)2型糖尿病+罗格列酮组(T2DM+RSG组)心肌组织IR、IRS-1的表达水平显著高于T2DM组;(3)免疫组化染色发现2型糖尿病+P165小/大剂量组(T2DM+P165小/大剂量组)心肌组织IR、IRS-1免疫反应阳性颗粒沉着的累积光密度值显著高于T2DM组;Western blot结果显示T2DM+P165小/大剂量组心肌组织IRS-1的表达水平显著高于T2DM组;而IR的表达水平与T2DM组相比无差别。结论(1)2型糖尿病大鼠心肌存在胰岛素抵抗或信号转导障碍;(2)罗格列酮干预后可以改善2型糖尿病心肌的胰岛素信号转导异常;(3)P165对2型糖尿病大鼠心肌胰岛素信号转导具有调节作用,其作用靶点可能为胰岛素受体底物。  相似文献   

10.
Insulin receptor substrate 1 (IRS-1) plays an important role in the insulin signaling cascade. In vitro and in vivo studies from many investigators have suggested that lowering of IRS-1 cellular levels may be a mechanism of disordered insulin action (so-called insulin resistance). We previously reported that the protein levels of IRS-1 were selectively regulated by a proteasome degradation pathway in CHO/IR/IRS-1 cells and 3T3-L1 adipocytes during prolonged insulin exposure, whereas IRS-2 was unaffected. We have now studied the signaling events that are involved in activation of the IRS-1 proteasome degradation pathway. Additionally, we have addressed structural elements in IRS-1 versus IRS-2 that are required for its specific proteasome degradation. Using ts20 cells, which express a temperature-sensitive mutant of ubiquitin-activating enzyme E1, ubiquitination of IRS-1 was shown to be a prerequisite for insulin-induced IRS-1 proteasome degradation. Using IRS-1/IRS-2 chimeric proteins, the N-terminal region of IRS-1 including the PH and PTB domains was identified as essential for targeting IRS-1 to the ubiquitin-proteasome degradation pathway. Activation of phosphatidylinositol 3-kinase is necessary but not sufficient for activating and sustaining the IRS-1 ubiquitin-proteasome degradation pathway. In contrast, activation of mTOR is not required for IRS-1 degradation in CHO/IR cells. Thus, our data provide insight into the molecular mechanism of insulin-induced activation of the IRS-1 ubiquitin-proteasome degradation pathway.  相似文献   

11.
Liu IM  Tzeng TF  Liou SS  Lan TW 《Life sciences》2007,81(21-22):1479-1488
The present study was conducted to explore the effects of myricetin on insulin resistance in rats fed for 6 weeks with a diet containing 60% fructose. Repeated intravenous (i.v.) injection of myricetin (1 mg/kg per injection, 3 times daily) for 14 days was found to significantly decrease the high glucose and triglyceride levels in plasma of fructose chow-fed rats. Also, the higher degree of insulin resistance in fructose chow-fed rats as measured by homeostasis model assessment of basal insulin resistance was significantly decreased by myricetin treatment. Myricetin increased the whole-body insulin sensitivity in fructose chow-fed rats, as evidenced by the marked elevation of composite whole-body insulin sensitivity index during the oral glucose tolerance test. Myricetin was found to reverse the defect in expression of insulin receptor substrate-1 (IRS-1) and the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) in soleus muscle of fructose chow-fed rats under the basal state, despite the protein expression of insulin receptor (IR). Increased basal phosphorylation of IR and IRS-1 as well as Akt was observed in parallel. The reduced level of insulin action on phosphorylation of IR, IRS-1 and Akt in soleus muscle of fructose chow-fed rats was reversed by myricetin treatment. Furthermore, myricetin treatment improved the defective insulin action on the translocation of glucose transporter subtype 4 (GLUT 4) in insulin-resistant soleus muscle. These findings indicate that myricetin improves insulin sensitivity through the enhancement of insulin action on IRS-1-associated PI 3-kinase and GLUT 4 activity in soleus muscles of animals exhibiting insulin resistance.  相似文献   

12.
Cellular adhesion to the underlying substratum is regulated through numerous signaling pathways. It has been suggested that insulin receptor substrate 1 (IRS-1) is involved in some of these pathways, via association with and activation of transmembrane integrins. Calreticulin, as an important endoplasmic reticulum-resident, calcium-binding protein with a chaperone function, plays an obvious role in proteomic expression. Our previous work showed that calreticulin mediates cell adhesion not only by affecting protein expression but also by affecting the state of regulatory protein phosphorylation, such as that of c-src. Here, we demonstrate that calreticulin affects the abundance of IRS-1 such that the absence of calreticulin is paralleled by a decrease in IRS-1 levels and the unregulated overexpression of calreticulin is accompanied by an increase in IRS-1 levels. These changes in the abundance of calreticulin and IRS-1 are accompanied by changes in cell-substratum adhesiveness and phosphorylation, such that increases in the expression of calreticulin and IRS-1 are paralleled by an increase in focal contact-based cellsubstratum adhesiveness, and a decrease in the expression of these proteins brings about a decrease in cell-substratum adhesiveness. Wild type and calreticulin-null mouse embryonic fibroblasts (MEFs) were cultured and the IRS-1 isoform profile was assessed. Differences in morphology and motility were also quantified. While no substantial differences in the speed of locomotion were found, the directionality of cell movement was greatly promoted by the presence of calreticulin. Calreticulin expression was also found to have a dramatic effect on the phosphorylation state of serine 636 of IRS-1, such that phosphorylation of IRS-1 on serine 636 increased radically in the absence of calreticulin. Most importantly, treatment of cells with the RhoA/ROCK inhibitor, Y-27632, which among its many effects also inhibited serine 636 phosphorylation of IRS-1, had profound effects on cell-substratum adhesion, in that it suppressed focal contacts, induced extensive close contacts, and increased the strength of adhesion. The latter effect, while counterintuitive, can be explained by the close contacts comprising labile bonds but in large numbers. In addition, the lability of bonds in close contacts would permit fast locomotion. An interesting and novel finding is that Y-27632 treatment of MEFs releases them from contact inhibition of locomotion, as evidenced by the invasion of a cell’s underside by the thin lamellae and filopodia of a cell in close apposition.  相似文献   

13.
We have examined the insulin-stimulated IRS-2 association with PI 3-kinase and the phosphorylation of AKT/PKB, which is functionally located downstream of the PI 3-kinase, in aged (obese) rats. The IRS-2 protein levels were similar in 2 and 20 month-old rats in both tissues, liver and muscle. There were reductions in insulin-induced IRS-2 tyrosine phosphorylation in liver and muscle, accompanied by a decrease in IRS-2/PI 3-kinase association and in AKT/PKB phosphorylation only in muscle tissue of aged rats. This regulation may be important in the altered glucose metabolism observed in aged (obese) rats.  相似文献   

14.
To determine whether serine/threonine ROCK1 is activated by insulin in vivo in humans and whether impaired activation of ROCK1 could play a role in the pathogenesis of insulin resistance, we measured the activity of ROCK1 and the protein content of the Rho family in vastus lateralis muscle of lean, obese nondiabetic, and obese type 2 diabetic subjects. Biopsies were taken after an overnight fast and after a 3-h hyperinsulinemic euglycemic clamp. Insulin-stimulated GDR was reduced 38% in obese nondiabetic subjects compared with lean, 62% in obese diabetic subjects compared with lean, and 39% in obese diabetic compared with obese nondiabetic subjects (all comparisons P < 0.001). Insulin-stimulated IRS-1 tyrosine phosphorylation is impaired 41-48% in diabetic subjects compared with lean or obese subjects. Basal activity of ROCK1 was similar in all groups. Insulin increased ROCK1 activity 2.1-fold in lean and 1.7-fold in obese nondiabetic subjects in muscle. However, ROCK1 activity did not increase in response to insulin in muscle of obese type 2 diabetic subjects without change in ROCK1 protein levels. Importantly, insulin-stimulated ROCK1 activity was positively correlated with insulin-mediated GDR in lean subjects (P < 0.01) but not in obese or type 2 diabetic subjects. Moreover, RhoE GTPase that inhibits the catalytic activity of ROCK1 by binding to the kinase domain of the enzyme is notably increased in obese type 2 diabetic subjects, accounting for defective ROCK1 activity. Thus, these data suggest that ROCK1 may play an important role in the pathogenesis of resistance to insulin action on glucose disposal in muscle of obese type 2 diabetic subjects.  相似文献   

15.
Regulation of insulin receptor substrate (IRS)-2 expression is critical to beta-cell survival, but the mechanisms that control this are complex and undefined. Here in pancreatic beta-cells (INS-1), chronic exposure (>8 h) to 15 mm glucose and/or 5 nm IGF-1, increased Ser/Thr phosphorylation of IRS-2, which correlated with decreased IRS-2 levels. This glucose/IGF-1-induced decrease in IRS-2 levels was prevented by the proteasomal inhibitor, lactacystin. In addition, the glucose/IGF-1-induced increase in Ser/Thr phosphorylation of IRS-2 and the subsequent decrease in INS-1 cell IRS-2 protein levels was thwarted by the mammalian target of rapamycin(mTOR) inhibitor, rapamycin. Moreover, adenoviral-mediated expression of constitutively active mTOR (mTORDelta) further increased glucose/IGF-1-induced Ser/Thr phosphorylation of IRS-2 and decreased IRS-2 protein levels, whereas adenoviral-mediated expression of "kinase-dead" mTOR (mTOR-KD) conversely reduced Ser/Thr phosphorylation of IRS-2 and maintained IRS-2 protein levels. In adenoviral-infected beta-cells expressing mTORDelta, the decrease in IRS-2 protein levels was also prevented by rapamycin or lactacystin, further indicating a proteasomal mediated degradation of IRS-2 mediated via mTOR-induced Ser/Thr phosphorylation of IRS-2. Finally, we found that chronic activation of mTOR leading to decreased levels of IRS-2 in INS-1 cells led to a significant decrease in PKB activation and consequently increased beta-cell apoptosis. Thus, chronic activation of mTOR by glucose (and/or IGF-1) in beta-cells leads to increased Ser/Thr phosphorylation of IRS-2 that targets it for proteasomal degradation, resulting in decreased IRS-2 expression and increased beta-cell apoptosis. This may be a contributing mechanism as to how beta-cell mass is decreased by chronic hyperglycemia in the pathogenesis of type-2 diabetes.  相似文献   

16.
To explore the mechanism of MAP kinase activation in adipocytes, we examined the possible involvement of several candidate signaling proteins. MAP kinase activity was markedly increased 2-4 min after treatment with insulin and declined to basal levels after 20 min. The insulin-dependent tyrosine phosphorylation of IRS-1 in the internal membrane and its association with phosphatidylinositol 3 (PI3) kinase preceded MAP kinase activation. There was little or no tyrosine phosphorylation of Shc or association of Grb2 with Shc or IRS-1. Specific PI3 kinase inhibitors blocked the insulin-mediated activation of MAP kinase. They also decreased the activation of MAP kinase by PMA and EGF but to a much lesser extent. Insulin induced phosphorylation of AKT on serine/threonine residues, and its effect could be blocked by PI3 kinase inhibitors. These results suggest that the insulin-dependent activation of MAP kinase in adipocytes is mediated by the IRS-1/PI3 kinase pathway but not by the Shc/Grb2/SOS pathway.  相似文献   

17.
Activation of SOCS-3 by resistin   总被引:44,自引:0,他引:44       下载免费PDF全文
Resistin is an adipocyte hormone that modulates glucose homeostasis. Here we show that in 3T3-L1 adipocytes, resistin attenuates multiple effects of insulin, including insulin receptor (IR) phosphorylation, IR substrate 1 (IRS-1) phosphorylation, phosphatidylinositol-3-kinase (PI3K) activation, phosphatidylinositol triphosphate production, and activation of protein kinase B/Akt. Remarkably, resistin treatment markedly induces the gene expression of suppressor of cytokine signaling 3 (SOCS-3), a known inhibitor of insulin signaling. The 50% effective dose for resistin induction of SOCS-3 is approximately 20 ng/ml, close to levels of resistin in serum. Association of SOCS-3 protein with the IR is also increased by resistin. Inhibition of SOCS function prevented resistin from antagonizing insulin action in adipocytes. SOCS-3 induction is the first cellular effect of resistin that is independent of insulin and is a likely mediator of resistin's inhibitory effect on insulin signaling in adipocytes.  相似文献   

18.
We used rat hepatic and uterine tissues to examine the impact of estradiol (E2) on insulin (INS) signaling. Ovariectomized (OVX) female Wistar rats were treated with E2 (20 microg/kg b.wt., i.p.) and used for the experiment 6h after E2 administration. To highlight E2 effects on tyrosine phosphorylation of INS receptor (IR) and INS receptor substrates (IRSs) and IRSs association with p85 subunit of phosphatidylinositol 3-kinase (PI3-K) in the context of INS signaling, E2-treated OVX rats were also injected with INS (20 IU, i.p.), 30 min before the experiment. Treatment with E2 did not change the levels of plasma INS and glucose (Glu). However, it significantly decreased the free fatty acid (FFA) level and increased uterine weight. Furthermore, the results show that E2 had no effect on the content of hepatic IR protein, but significantly increased IR protein content in the uterus and decreased IR tyrosine phosphorylation in both the liver and uterus. Compared to the control, hepatic IRS-1 and IRS-2 were significantly decreased and increased, respectively, after E2 treatment. Protein content of both molecules, IRS-1 and IRS-2, was increased in uterine tissue after E2 administration. Protein content of the p85 subunit of PI3-K and that of protein kinase B (Akt) were increased in the uterus, with no changes in the liver. The results suggest that E2 treatment induces tissue-specific changes in INS signaling. The consequences of E2 treatment on INS signaling molecules are more apparent in the uterus, but their physiological relevance for INS action is probably greater in the liver.  相似文献   

19.
Gene targeting was used to characterize the physiological role of growth factor receptor-bound (Grb)14, an adapter-type signalling protein that associates with the insulin receptor (IR). Adult male Grb14(-/-) mice displayed improved glucose tolerance, lower circulating insulin levels, and increased incorporation of glucose into glycogen in the liver and skeletal muscle. In ex vivo studies, insulin-induced 2-deoxyglucose uptake was enhanced in soleus muscle, but not in epididymal adipose tissue. These metabolic effects correlated with tissue-specific alterations in insulin signalling. In the liver, despite lower IR autophosphorylation, enhanced insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and activation of protein kinase B (PKB) was observed. In skeletal muscle, IR tyrosine phosphorylation was normal, but signalling via IRS-1 and PKB was increased. Finally, no effect of Grb14 ablation was observed on insulin signalling in white adipose tissue. These findings demonstrate that Grb14 functions in vivo as a tissue-specific modulator of insulin action, most likely via repression of IR-mediated IRS-1 tyrosine phosphorylation, and highlight this protein as a potential target for therapeutic intervention.  相似文献   

20.
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway conveys signals from receptor tyrosine kinases (RTKs) to regulate cell metabolism, proliferation, survival, and motility. Previously we found that prolylcarboxypeptidase (PRCP) regulate proliferation and survival in breast cancer cells. In this study, we found that PRCP and the related family member prolylendopeptidase (PREP) are essential for proliferation and survival of pancreatic cancer cells. Depletion/inhibition of PRCP and PREP-induced serine phosphorylation and degradation of IRS-1, leading to inactivation of the cellular PI3K and AKT. Notably, depletion/inhibition of PRCP/PREP destabilized IRS-1 in the cells treated with rapamycin, blocking the feedback activation PI3K/AKT. Consequently, inhibition of PRCP/PREP enhanced rapamycin-induced cytotoxicity. Thus, we have identified PRCP and PREP as a stabilizer of IRS-1 which is critical for PI3K/AKT/mTOR signaling in pancreatic cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号