首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diabetes is a chronic disease characterized by a deficit in beta cell mass and a failure of glucose homeostasis. Both circumstances result in a variety of severe complications and an overall shortened life expectancy. Thus, diabetes represents an attractive candidate for cell therapy. Reversal of diabetes can be achieved through pancreas and islet transplantation, but shortage of donor organs has prompted an intensive search for alternative sources of beta cells. This achievement has stimulated the search for appropriate stem cell sources. Both embryonic and adult stem cells have been used to generate surrogate beta cells or otherwise restore beta cell functioning. In this regard, several studies have reported the generation of insulin-secreting cells from embryonic and adult stem cells that normalized blood glucose values when transplanted into diabetic animal models. Due to beta cell complexity, insulin-producing cells generated from stem cells do not possess all beta cell attributes. This indicates the need for further development of methods for differentiation and selection of completely functional beta cells. While these problems are overcome, diabetic patients may benefit from therapeutic strategies based on autologous stem cell therapies addressing late diabetic complications. In this article, we discuss the recent progress in the generation of insulin-producing cells from embryonic and adult stem cells, together with the challenges for the clinical use of diabetes stem cell therapy.  相似文献   

2.
3.
The nonobese diabetic (NOD) mouse is a classical animal model for autoimmune type 1 diabetes (T1D), closely mimicking features of human T1D. Thus, the NOD mouse presents an opportunity to test the effectiveness of induced pluripotent stem cells (iPSCs) as a therapeutic modality for T1D. Here, we demonstrate a proof of concept for cellular therapy using NOD mouse-derived iPSCs (NOD-iPSCs). We generated iPSCs from NOD mouse embryonic fibroblasts or NOD mouse pancreas-derived epithelial cells (NPEs), and applied directed differentiation protocols to differentiate the NOD-iPSCs toward functional pancreatic beta cells. Finally, we investigated whether the NPE-iPSC-derived insulin-producing cells could normalize hyperglycemia in transplanted diabetic mice. The NOD-iPSCs showed typical embryonic stem cell-like characteristics such as expression of markers for pluripotency, in vitro differentiation, teratoma formation, and generation of chimeric mice. We developed a method for stepwise differentiation of NOD-iPSCs into insulin-producing cells, and found that NPE-iPSCs differentiate more readily into insulin-producing cells. The differentiated NPE-iPSCs expressed diverse pancreatic beta cell markers and released insulin in response to glucose and KCl stimulation. Transplantation of the differentiated NPE-iPSCs into diabetic mice resulted in kidney engraftment. The engrafted cells responded to glucose by secreting insulin, thereby normalizing blood glucose levels. We propose that NOD-iPSCs will provide a useful tool for investigating genetic susceptibility to autoimmune diseases and generating a cellular interaction model of T1D, paving the way for the potential application of patient-derived iPSCs in autologous beta cell transplantation for treating diabetes.  相似文献   

4.
Pluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types. We summarize and interpret insights gained from studies of embryonic neuroepithelium. A multitude of factors including soluble molecules, interactions with the extracellular matrix and neighboring cells cooperate to control neural stem cell self-renewal versus differentiation. Applying these findings and concepts to human stem cell systems in vitro may yield more appropriately patterned cell types for biomedical applications.  相似文献   

5.
Assembly of complex vascular networks occurs in numerous biological systems through morphogenetic processes such as vasculogenesis, angiogenesis and vascular remodeling. Pluripotent stem cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells can differentiate into any cell type, including endothelial cells (ECs), and have been extensively used as in vitro models to analyze molecular mechanisms underlying EC generation and differentiation. The emergence of these promising new approaches suggests that ECs could be used in clinical therapy. Much evidence suggests that ES/iPS cell differentiation into ECs in vitro mimics the in vivo vascular morphogenic process. Through sequential steps of maturation, ECs derived from ES/iPS cells can be further differentiated into arterial, venous, capillary and lymphatic ECs, as well as smooth muscle cells. Here, we review EC development from ES/iPS cells with special attention to molecular pathways functioning in EC specification.  相似文献   

6.
7.
Cells isolated from pancreas have a remarkable potential for self-renewal and multilineage differentiation. We here present a comprehensive characterisation of stem/progenitor cells derived from exocrine parts of the adult rat pancreas. Using purified cells from either single colonies or even single-cell clones, we specifically demonstrate: (i) the cells contain the typical stem/progenitor cell markers alkaline phophatase, SSEA-1, Oct-4, CD9, Nestin, Pax6, CD44, -Fetoprotein and Brachyury, demonstrated by immunocytochemistry and RT-PCR; (ii) the cells have the potential to differentiate into lineages of all three germ layers in vitro; (iii) a clonal analysis revealed that even cell lines derived from a single cell have stem/progenitor cell properties such as self-renewal and spontaneous differentiation into various cell lineages; (iv) the cells have the propensity to form three-dimensional, teratoma-like structures in vitro, which contain cells of different lineages; and (v) external stimuli can activate the generation of certain cell types. For instance, cells treated with retinoic acid show an increased expression of -smooth muscle actin.

These results suggest that exocrine glands, such as pancreas may be a potential source of adult stem/progenitor cells, suitable for cell therapy of degenerative diseases.  相似文献   


8.
9.
Type 1 and 2 diabetes are characterized by a deficiency in β-cell mass, which cannot be reversed with existing therapeutic strategies. Therefore, restoration of the endogenous insulin-producing cell mass holds great promise for curing diabetes in the future. Since the initial induction of insulin-producing cells (IPCs) from embryonic stem (ES) cells in 1999, several strategies and alternative cell sources have been developed to generate β-like cells, including direct differentiation from ES cells or induced pluripotent stem (iPS) cells, proliferation of existing adult β-cells, and reprogramming of non-pancreatic adult stem/mature cells or pancreatic non-β-cells to β-like-cells. However, several barriers persist in the translation of the aforementioned strategies into clinically applicable methods for IPC induction. We briefly review the most relevant studies for each strategy, and discuss the comparative merits and drawbacks. We propose that ex vivo patient-specific IPCs generated from iPS cells may be practical for cell transplantation in the near future, and in situ regeneration of IPCs from cells within the pancreas may be preferable for diabetes therapy.  相似文献   

10.
Neural stem cells, which exhibit self-renewal and multipotentiality, are generated in early embryonic brains and maintained throughout the lifespan. The mechanisms of their generation and maintenance are largely unknown. Here, we show that neural stem cells are generated independent of RBP-Jkappa, a key molecule in Notch signaling, by using RBP-Jkappa(-/-) embryonic stem cells in an embryonic stem cell-derived neurosphere assay. However, Notch pathway molecules are essential for the maintenance of neural stem cells; they are depleted in the early embryonic brains of RBP-Jkappa(-/-) or Notch1(-/-) mice. Neural stem cells also are depleted in embryonic brains deficient for the presenilin1 (PS1) gene, a key regulator in Notch signaling, and are reduced in PS1(+/-) adult brains. Both neuronal and glial differentiation in vitro were enhanced by attenuation of Notch signaling and suppressed by expressing an active form of Notch1. These data are consistent with a role for Notch signaling in the maintenance of the neural stem cell, and inconsistent with a role in a neuronal/glial fate switch.  相似文献   

11.
Traditionally, applied stem cell research has been segregating into strategies aiming at endogenous repair and cell transplantation. Recent advances in both fields have unraveled unexpected potential for synergy between these disparate fields. The increasing dissection of the step-wise integration of adult-born neurons into an established brain circuitry provides a highly informative blueprint for the functional incorporation of grafted neurons into a host brain. On the other hand, in vitro recapitulation of developmental differentiation cascades permits the de novo generation of various neural cell types from pluripotent embryonic stem (ES) cells. Advanced tools in stem cell engineering enable not only genetic selection and instruction of disease-specific donor cells for neural replacement but also the exploitation of stem cells as transgenic cellular model systems for human diseases. In a comparative approach we here illuminate the functional integration of neurons derived from endogenous and transplanted stem cells, the evolving technologies for advanced stem cell engineering and the impact of cloned and mutated stem cells on disease modeling.  相似文献   

12.
Diseases that affect endodermally derived organs such as the lungs, liver, and pancreas include cystic fibrosis, chronic hepatitis, and diabetes, respectively. Despite the prevalence of these diseases, cures remain elusive. While several promising transplantation-based therapies exist for some diseases such as Type 1 diabetes, they are currently limited by the availability of donor-derived tissues. Embryonic stem cells are a promising and renewable source of tissue for transplantation; however, directing their differentiation into specific, adult cell lineages remains a significant challenge. In this review, we will focus on one endodermally derived organ, the pancreas, and discuss how studies of embryonic pancreas development have been used as the basis for the directed, step-wise differentiation of mouse and human embryonic stem cells into pancreatic endocrine cells that are capable of rescuing Type 1 diabetes in animal models.  相似文献   

13.
Throughout the development of the central nervous system, neural crest cells and the primary neural stem cells originate several non-neuronal and neuronal cell types. Undifferentiated stem cells exist in the adult brain, mainly in the dentate gyrus of the hippocampus and in the subventricular zone of the lateral ventricles, and can produce new neurons, participating in brain plasticity and tissue regeneration. Neurogenesis in the embryonic and adult brain occurs under the control of intrinsic and extrinsic factors. However, the mechanisms, by which cell cycle components control neural stem cell proliferation and consequently neurogenesis, still lack further investigation. We discuss here recent knowledge obtained on cell cycle components as key regulators of neural stem and progenitor cell proliferation and differentiation in the embryonic and adult brain.  相似文献   

14.
探讨胚胎干细胞向胰岛素分泌细胞分化的途径,对胰腺组织工程的临床运用有重要意义。将胚胎干细胞在有小鼠胚胎成纤维细胞饲养层和白血病抑制因子的条件下培养扩增后,再将扩增后的胚胎干细胞不经过神经前体细胞阶段直接诱导为胰岛素分泌细胞,并与传统的多阶段诱导(经过神经前体细胞阶段)进行比较。结果发现,胚胎干细胞脱离饲养层细胞后,经过9~10d的分化诱导,可以分化为具有胰岛β-细胞特征的胰岛素分泌细胞。与传统的多阶段诱导方法相比,诱导过程简化,诱导时间缩短,所得到的胰岛素分泌细胞数量无明显差异。说明胚胎干细胞向胰岛素分泌细胞分化存在多条途径。神经前体细胞阶段不是胚胎干细胞向胰岛素分泌细胞分化的必须途径。用传统的多阶段分化诱导法和直接诱导法都可以将胚胎干细胞诱导成胰岛素分泌细胞。  相似文献   

15.
The study of neuronal differentiation of embryonic stem cells has raised major interest over recent years. It allows a better understanding of fundamental aspects of neurogenesis and, at the same time, the generation of neurons as tools for various applications ranging from drug testing to cell therapy and regenerative medicine. Since the first report of human embryonic stem (ES) cells derivation, many studies have shown the possibility of directing their differentiation towards neurons. However, there are still many challenges ahead, including gaining a better understanding of the mechanisms involved and developing techniques to allow the generation of homogeneous neuronal and glial subtypes. We review the current state of knowledge of embryonic neurogenesis which has been acquired from animal models and discuss its translation into in vitro strategies of neuronal differentiation of ES cells. We also highlight several aspects of current protocols which need to be optimized to generate high-quality embryonic stem cell-derived neuronal precursors suitable for clinical applications. Finally, we discuss the potential of embryonic stem cell-derived neurons for cell replacement therapy in several central nervous system diseases.  相似文献   

16.
On the origin of the beta cell   总被引:3,自引:0,他引:3  
  相似文献   

17.
In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.  相似文献   

18.
To understand global features of gene expression changes during in vitro neural differentiation, we carried out the microarray analysis of embryonic stem cells (ESCs), embryonal carcinoma cells, and adult neural stem/progenitor (NS) cells. Expression profiling of ESCs during differentiation in monolayer culture revealed three distinct phases: undifferentiated ESCs, primitive ectoderm-like cells, and neural progenitor cells. Principal component (PC) analysis revealed that these cells were aligned on PC1 over the course of 6 days. This PC1 represents approximately 4,000 genes, the expression of which increased with neural commitment/differentiation. Furthermore, NS cells derived from adult brain and their differentiated cells were positioned along this PC axis further away from undifferentiated ESCs than embryonic stem-derived neural progenitors. We suggest that this PC1 defines a path to neural fate, providing a scale for the degree of commitment/differentiation.  相似文献   

19.
Patients with diabetes experience decreased insulin secretion that is linked to a significant reduction in the number of islet cells. Reversal of diabetes can be achieved through islet transplantation, but the scarcity of donor islets severely hinders wide application of this therapeutic modality. Toward that end, embryonic stem cells, adult tissue-residing progenitor cells, and regenerating native beta-cells may serve as sources of islet cell surrogates. Insulin-producing cells generated from stem or progenitor cells display subsets of native beta-cell attributes, indicating the need for further development of methods for differentiation to completely functional beta-cells. Pharmacological approaches aiming at stimulating the in vivo/ex vivo regeneration of beta-cells have also been proposed as a way of augmenting islet cell mass. We review the current state of the generation of insulin-producing cells from different sources with emphasis on embryonic stem cells and adult progenitor cells. Challenges for the clinical use of these sources are also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号