首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2023,49(18):29573-29583
The composition of the refractory strongly affects the cleanliness of the alloy. K4169 Ni-based superalloys were melted in different types of refractories in this study. The cleanliness of the Ni-based superalloy and phase transformation of the refractory were observed by X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectroscopy (SEM‒EDS). The high-temperature stabilities of a Y2O3-based refractory, MgO-based refractory, and Al2O3-based refractory during melting with a Ni-based alloy were compared. The oxygen content was also lowest, and no Y2O3-containing inclusions were observed in the Ni-based alloy melted with the Y2O3-based refractory at 1823 K. Inclusions with 21%–29% MgO and a phase composed of Al, Mg and O with an area of approximately 1300 μm2 were observed in the alloy. This indicates that the dissolution and erosion of the Y2O3-based refractory were weak, and obvious physical erosion and chemical dissolution of the MgO-based refractory occurred during the melting process of the Ni-based alloy. The width of the refractory phase adhered to the boundary of the Ni-based alloy increased in the order Y2O3-based refractory (15 μm- 23 μm)< Al2O3-based refractory (93 μm- 285 μm)< MgO-based refractory (3.5 mm–3.6 mm), indicating that the adhesive strength of the MgO-based refractory with the Ni-based alloy was strongest. The interaction between the refractory material, Ni-based alloy and inclusions was analyzed based on thermodynamic calculations by Factsage software. The effects of dissolution of the three refractory types on the formation and transformation of the new phases and inclusions were estimated. The thermodynamic results were in good agreement with the experimental results.  相似文献   

2.
《Ceramics International》2022,48(11):15762-15769
A new La2O3-doped Y2O3 crucible materials was fabricated and evaluated by TiAl alloys melting test. Microstructure and properties of the La2O3-doped Y2O3 ceramics were systemically investigated. In addition, interfacial reaction mechanism of the La2O3-doped Y2O3 crucible materials and TiAl alloys, together with oxygen content of TiAl alloys were discussed. Solid solution of La3+ in the crystal lattice of Y2O3 significantly improved sintering properties of the La2O3-doped Y2O3 crucible materials and decreased the open porosity. Compared with pure Y2O3, when adding 15 wt% La2O3, the open porosity and strength retention ration after thermal shock test of the La2O3-doped Y2O3 crucible materials changed from 10.8% to 3.9% and from 64% to 78%, respectively. The interfacial reaction between La2O3-doped Y2O3 crucible materials and TiAl alloys belongs to physical dissolution, and no reaction products were found during the melting of TiAl alloys. When using the 15 wt% La2O3-doped Y2O3 crucible materials to melt TiAl alloys, oxygen content of the TiAl ingot declined to 530 ppm, which was only one fourth of that using pure Y2O3 materials.  相似文献   

3.
In this study, a new Ca-doped BaZrO3 refractory was designed by using thermodynamics approaches and tested for its applicability for vacuum induction melting (VIM) of TiAl alloys. The influence of CaO on the BaZrO3 phase constitution and microstructure, as well as the key features of the TiAl melt interaction with the Ca-doped BaZrO3 crucibles were investigated by X-ray diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). Results revealed that the Ca-doped BaZrO3 refractory consisted of Ba1-xCaxZrO3 and CaO phases. An obvious interaction occurred during the melting of the TiAl alloy in the Ca-doped BaZrO3 crucible along with the generation of BaAl2O4 as a reaction product, with formation of a reaction layer up to 5?µm thick. Dissolution of Ca-doped BaZrO3 refractory in the TiAl melt was the main reason for the alloy-crucible reaction. Moreover, the Ca-doped BaZrO3 crucible was found to substantially reduce the contamination of the TiAl alloy, with lower oxygen concentration as compared with other conventional oxide crucibles. Overall results confirmed that vacuum induction melting using the Ca-doped BaZrO3 refractory can be considered as an appropriate method for the fabrication of TiAl alloys.  相似文献   

4.
The effects of novel Y2O3-coated Al2O3 (Y2O3/Al2O3) crucibles on the microstructure and composition of directionally solidified TiAl alloys were investigated and compared with those of single layered Al2O3 and Y2O3 crucibles, based on which the corresponding alloy–crucible interaction mechanisms were discussed. The DS alloys exhibited a fully lamellar γ/α2 structure interspersed with some Al2O3 or Y2O3 particles. Differently from that in the case of using Al2O3 crucibles, no interfacial interaction layer was found in the ingots prepared using Y2O3/Al2O3 crucibles. Dissolution and erosion were the main mechanisms responsible for the alloy–crucible interactions which increased with the heating temperature and interaction time. Nevertheless, the interaction extents when using Y2O3/Al2O3 crucibles were much lower than using Al2O3 crucibles, making the former promising candidate crucibles for the high quality DS of highly reactive TiAl alloys.  相似文献   

5.
The absence of appropriate melting method and expensive cost of high-purity Zr raw material limit the commercial application of Zr-based bulk metallic glass. In the present study, using high oxygen industrial grade sponge Zr as raw material and the metal Y as additive, the low-cost and high-purity master alloys were successively prepared using a VIM method with a BaZrO3 refractory crucible. The results indicate that the BaZrO3 refractory exhibited good erosion resistance to the alloy melt, the Y additive formed the Y2O3 barrier layer on the surface of crucible, which prevented the melt permeation into the crucible, then effectively reduced the thickness of the erosion layer. In addition, the metal Y deoxidizer could remove the oxygen of melts, finally the low oxygen Zr-based master alloy (about 0.02 wt%) was prepared. These results may provide a promising preparing technique prototype of low-cost Zr-based bulk metallic glass.  相似文献   

6.
《Ceramics International》2023,49(8):12360-12371
In order to further understand the effect of Y2O3 doping on the electrical conductivity of CaHf1−xYxO3−δ, which was prepared by conventional solid-state reaction. The electrical conductivity of CaHf1−xYxO3−δ was measured by two-terminal AC method in an oxygen-rich atmosphere, hydrogen-rich atmosphere and water vapor-rich atmosphere at the temperature between 973 and 1373 K. The test results show that the conductivity of CaHf1−xYxO3−δ first increases and then decreases with x from 0.08 to 0.20, and its total conductivity and conductivity activation energy are 3.88 × 10−7 to 5.34 × 10−5S/m and 0.76–0.92eV respectively. Combined with the test results of the H/D isotope effect, it is found that protons are the main conductive carriers in the three different atmosphere at temperatures range of 973–1173 K. In addition, in the temperatures range of 1273–1373 K, the positive holes are the main conductive carriers in the oxygen rich atmosphere, and the vacancies participates in the conductive process as the main conductive carriers in the water vapor rich atmosphere. The chemical diffusion coefficients of CaHf1−xYxO3−δ is 3.9 × 10−6 to 2.4 × 10−5 cm2/s in the temperature range of 973–1373 K. According to the test results of electromotive force, the theoretical electromotive force is consistent with the measured electromotive force. The proton transfer number of CaHf1−xYxO3−δ exceeded 97% in hydrogen atmosphere at temperatures from 973 to 1173 K. In sum, these findings of CaHf1−xYxO3−δ can be used as alternative materials for hydrogen sensor electrolytes.  相似文献   

7.
《Ceramics International》2023,49(1):117-125
Laboratory experiments were carried out to study the effect of a MgO–CaO–ZrO2-based refractory (MCZ refractory) on the cleanliness of a K4169 Ni-based superalloy. The chemical composition and characteristics of the refractory, alloy, and inclusions were analysed by X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS). Characterisation results indicated that the CaZrO3 phase was stable, the amount of the spinel phase increased whereas that of the MgO phase decreased, and Ca2Al2SiO7 and Ca2SiO4 transformed into Ca3Ti8Al12O37 and CaSiO3, respectively, in the refractory during the melting of the Ni-based superalloy. In addition, a new phase of Mg8Cr16O32 was simultaneously formed. The MCZ refractory penetrated the liquid alloy and reacted with it, which increased the Mg and Ca contents of the alloy. The erosion depth of the refractory in the alloy was more than 20 μm after melting for 100 min. Inclusions composed of MgO–Al2O3-TixOy wrapped with TiN were observed in the alloy after melting in the MCZ refractory. The inclusions were large, numerous, and distributed inhomogeneously in the alloy near the side and bottom of the refractory. The chemical reactions among the refractory, liquid alloy, and inclusions were analysed, and FactSage software was used to investigate these interactions. The effect of the dissolution of the MCZ refractory on the composition and transformation of the liquid alloy and inclusion was estimated. The thermodynamic results agreed well with the experimental results.  相似文献   

8.
《Ceramics International》2023,49(3):4695-4700
(Tb0.8Y0.2-xLax)2O3 transparent ceramics were prepared by using co-precipitation method combined with pressure-less sintering in flowing H2 atmosphere. Microstructure, optical transmittance, elements composition, and Verdet constant of the (Tb0.8Y0.2-xLax)2O3 ceramics were studied. The amount of La2O3 is crucial for the formation of expected transparent (Tb0.8Y0.2)2O3. With increasing content of La2O3, the number of pores and the grain size of as-fabricated (Tb0.8Y0.2-xLax)2O3 ceramics both decrease. When 4 at.% La2O3 is doped, the (Tb0.8Y0.16)2O3 transparent ceramics shows the highest transmittance of 73.3% at 1400 nm wavelength. With holding time increasing from 8 h to 15 h, the average grain size of (Tb0.8Y0.16La0.04)2O3 ceramics gradually increases from 5 μm to 13 μm. The Verdet constant measured at 633 nm is ?352 rad/T·m, which is 2.63 times higher than that of TGG. In addition, large-size ceramics with Φ 20 mm × 3 mm and Φ 30 mm × 3 mm were also successfully obtained.  相似文献   

9.
In this work, Gd3+ was selected to partially substitute the Y3+ in yttrium aluminum garnet (YAG) in order to improve the thermophysical properties of YAG. A series of (Y1-xGdx)3Al5O12 (x = 0, 0.1, 0.2, 0.3, 0.4) ceramics were synthesized through chemical co-precipitation route. The microstructure, thermophysical properties and elasticity modulus of (Y1-xGdx)3Al5O12 were investigated. The (Y1-xGdx)3Al5O12 ceramics was comprised of single garnet-type Y3Al5O12 phase. The thermal conductivities of (Y1-xGdx)3Al5O12 bulk samples decreased with increasing doping concentration to 0.2, but increased with furthering increasing the concentration to 0.4. The thermal conductivity of (Y0.8Gd0.2)3Al5O12 was 1.51 W m−1 K−1 at 1200 °C. The average thermal expansion coefficient of (Y0.8Gd0.2)3Al5O12 was slightly larger than that of Y3Al5O12. (Y0.8Gd0.2)3Al5O12 bulk sample exhibited the lowest elasticity modulus among the investigated (Y1-xGdx)3Al5O12. In addition, (Y0.8Gd0.2)3Al5O12 ceramic remained good phase stability from room temperature to 1600 °C.  相似文献   

10.
《Ceramics International》2021,47(20):28942-28950
To improve the luminescence property of Sm3+ in Y2Mo3O12, partial Ca2+-F- co-substituted Y2Mo3O12:Sm3+ phosphor, namely Y2-xCaxMo3O12-xFx:Sm3+, was prepared using a solid-state method. The effect of introducing Ca2+-F- ion pairs on structure and luminescence properties of Y2Mo3O12:Sm3+ was studied in depth. XRD patterns not only manifested that all as-prepared Y2-xCaxMo3O12-xFx:Sm3+ samples had standard Y2Mo3O12 structure, but also indicated the introduction of Ca2+-F- ion pairs did not cause the change of crystal structure. Under the near ultraviolet excitation of 404 nm, the emission peaks of Y2Mo3O12:Sm3+ were located at 567 nm, 605 nm and 652 nm, respectively, resulting from the 4f→4f electron transitions of Sm3+ ions. Furthermore, the luminescence intensity of Sm3+ was obviously enhanced through the co-substitution of Y3+-O2- ions with Ca2+-F- ions in Y2Mo3O12 structure, and the chromaticity coordinates moved towards red region, which due to the environmental effect of crystal field around Sm3+. Besides, the red LED device was manufactured for suitable chromaticity parameters. All results indicated that the as-prepared Y1.84Ca0.06Mo3O11.94F0.06:0.10Sm3+ red-emitting phosphor could become a promising candidate for application of white light-emitting diodes and plant illumination.  相似文献   

11.
In this study, a new Sr-Zr oxide refractory was designed and prepared through a solid-state reaction method according to the mole ratio of n(SrO): n(ZrO2) = 2:1. The results reveal that the Sr-Zr oxide refractory consisted of three phases, i.e., Sr2ZrO4, Sr3Zr2O7 and SrO. The thermodynamically stable phase Sr2ZrO4 was hard to form completely due to the limitation of reaction kinetics between SrCO3 and ZrO2, and thus Sr3Zr2O7 and SrO coexisted in the Sr-Zr oxide refractory. The composite refractory exhibited a good corrosion resistance during the melting of TiNi alloy melts, and only a slight interaction occurred in the refractory crucible after melting, with the formation of a reaction layer (28 μm in thickness). In addition, the oxygen concentration of the prepared TiNi alloys was determined to be only 0.046 wt.%. These results indicate that the Sr-Zr oxide composites have potential to be used as a refractory candidate for the induction melting of high-activity alloys.  相似文献   

12.
《Ceramics International》2023,49(3):4751-4757
The interaction between molten metals and ceramic coating materials was studied to minimize fuel material loss and develop a reusable crucible for fuel melts. U-Zr-Nd alloy and pure Nd were used as metal melts while the substrate pellets were Y2O3-plasma-spray-coated graphite. The metals were melted using the sessile drop test method on Y2O3-coated graphite pellets. All Y2O3 coating layers of the specimens detached from the graphite specimens and attached to the molten metals because of their reactivity. Furthermore, a microstructural analysis of the specimens was performed after droplet testing. The results revealed that (Nd,Y)2O3 compounds were formed by the reaction between Nd and Y2O3 coating during the U-Zr-Nd fuel melting on the substrate.  相似文献   

13.
《Ceramics International》2015,41(6):7766-7772
A series of (1−x)YVO4/xY2O3:Eu3+0.006,Bi3+0.006 (0≤x≤0.54) composite phosphors was synthesized in one step by high temperature solid state reaction and the photoluminescence properties were investigated. By means of co-doping Eu3+ and Bi3+ ions into the composite matrices composed of YVO4 and Y2O3 crystals, the YVO4/Y2O3:Eu3+,Bi3+ phosphor exhibits simultaneously the blue (418 nm), green (540 nm) and orange-red (595, 620 nm) emissions. The broad blue and green emissions are attributed to the 3P11S0 transitions of Bi3+ ion both in Y2O3 and in YVO4 matrices. Moreover, the sharp orange-red emissions are attributed to the 5D07F1,2 transitions of Eu3+ ion in YVO4 matrix. By tuning the mole ratio of YVO4/Y2O3 matrices the white light-emitting could be obtained. The results indicated that when the mole ratio of Y2O3 (x) is at 0.11–0.54 mol, the (1−x)YVO4/xY2O3:Eu3+0.006,Bi3+0.006 phosphors emit white light by combining the blue, green and orange-red emissions under the excitation of 360–370 nm wavelength which matches the emission of the commercial UV-LED diode. This implies that the phosphors may be the promising white light materials with broad absorption band for white light-emitting diodes.  相似文献   

14.
MgO-Y2O3:Eu composite ceramics with high quantum yield and excellent thermal performance were successfully synthesized by vacuum sintering. All samples exhibited uniform composite microstructures and pure binary phase. Eu3+ ions were completely incorporated into Y2O3 phase, and the optimal Eu concentration is 15 at%. Sintered at 1800 °C, the fluorescent properties of MgO- z vol% Y2O3: Eu (z = 30, 40, 50, 60, 70, 100) composites proved to be independent on component proportion, including the similar fluorescence lifetimes (953–983 μs), quantum yield (70%−80%), and activation energy (ΔE) of thermal quenching (0.163 eV). Significantly, thermal conductivity of composites with 30 vol%, 50 vol% and 70 vol% MgO attained 11.58, 17.45, and 29.65 W/(m∙K) at room temperature, which are nearly 2, 3, and 5 times as high as that of 15 at% Eu:Y2O3 ceramic (5.90 W/(m∙K)), respectively, demonstrating their potential for application in high-power-density display and lighting technology.  相似文献   

15.
《Ceramics International》2017,43(9):7153-7158
In this work, Yb3+ was selected to replace the Y3+ in yttrium aluminum garnet (YAG) in order to reduce its thermal conductivity under high temperature. A series of (Y1-xYbx)3Al5O12 (x=0, 0.1, 0.2, 0.3, 0.4) ceramics were prepared by solid-state reaction at 1600 °C for 10 h. The microstructure, thermophysical properties and phase stability under high temperature were investigated. The results showed that all the Yb doped (Y1-xYbx)3Al5O12 ceramics were comprised of a single garnet-type Y3Al5O12 phase. The thermal conductivities of (Y1-xYbx)3Al5O12 ceramics firstly decreased and subsequently increased with Yb ions concentration rising from room temperature to 1200 °C. (Y0.7Yb0.3)3Al5O12 had the lowest thermal conductivity among investigated specimens, which was about 1.62 W m−1 K−1 at 1000 °C, around 30% lower than that of pure YAG (2.3 W m−1 K−1, 1000 °C). Yb had almost no effect on the coefficients of thermal expansion (CTEs) of (Y1-xYbx)3Al5O12 ceramics and the CTE was approximate 10.7×10−6 K−1 at 1200 °C. In addition, (Y0.7Yb0.3)3Al5O12 ceramic remained good phase stability when heating from room temperature to 1450 °C.  相似文献   

16.
A chemical solution processing method based on sol-gel chemistry (SG) was used to synthesize (1-x)Y2/3Cu3Ti4O12-xSrTiO3 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) ceramics successfully. The 0.85Y2/3Cu3Ti4O12-0.15SrTiO3 ceramics sintered at 1050 °C for 20 h showed fine-grained microstructure and high dielectric constant (ε′  1.7 × 105) at 1 kHz. Furthermore, the 0.85Y2/3Cu3Ti4O12-0.15SrTiO3 ceramics appeared distinct pseudo-relaxor behavior. Two electrical responses were observed in the combined modulus and impedance plots, indicating the presence of Maxwell-Wagner relaxation. Sr vacancies and additional oxygen vacancies had substantial contribution to the sintering behavior, an increase in grain growth, and relaxation behaviors in grain boundaries. The contributions of semiconducting grains with the nanodomain and insulating grain boundaries (corresponding to high-frequency and low-frequency electrical response, respectively) played important roles in the dielectric properties of (1-x)Y2/3Cu3Ti4O12-xSrTiO3 ceramics. The occurrence of the polarization mechanism transition from the grain boundary response to the electrode one with temperature change was clearly evidenced in the low frequency range.  相似文献   

17.
《Ceramics International》2022,48(11):15677-15685
The possibility of isovalent substitution in the In-sublattice of layered perovskite BaLaInO4 was experimentally investigated. The yttrium doping leads to the increase of total and protonic conductivity up to 2 orders of magnitude. The solid solution BaLaIn1?xYxO4 (0 ≤ x ≤ 0.5) is mixed ionic-electronic (hole) conductor at the dry air. The increase in the water vapor partial pressure leads to the appearance of protons in the structure below 600 °C, which is confirmed by the decrease of activation energy from ~0.75 eV to ~0.52 eV for doped samples. Both undoped and doped BaLaIn1?xYxO4 samples are nearly pure (~95%) proton conductors under wet air conditions below 400 °C. The most conductive Y-doped compositions BaLaIn0.8Y0.2O4 demonstrates the proton conductivity value 4?10?5 S/cm at the 400 °C.  相似文献   

18.
The densities of molten Y2O3-Al2O3 compounds, including yttrium aluminum garnet (Y3Al5O12), were determined over a wide temperature range that included an undercooled region, using an electrostatic levitation furnace. The density of the molten Y3Al5O12 varied with temperature according to the relationship 3750 − 0.25(TTm) (kg/m3) with Tm = 2240 K and for the range of 1300 K ≤ T ≤ Tm, yielding the thermal expansion coefficient ɑ = 6.7×10−5 K−1. The molar volumes of molten (100-x)Y2O3-xAl2O3 (x = 0, 33.3, 50, 55, 62.5, 76.5, 81.5, or 100 mol%) were found to vary with the value of x in a linear manner within the superheated temperature range. However, the molar volumes in the undercooled region deviated from those calculated using an ideal solution model owing to attractive interactions between Y2O3 and Al2O3.  相似文献   

19.
《Ceramics International》2023,49(3):4482-4504
Three kinds of Dy3+ ion-doped (LuxY1-x)3Al5O12 (x = 0, 1/3, 1/2) single crystals fabricated by the Czochralski method with 4 at.% Dy3+ ion doping were investigated by indentation and scratch techniques under Vickers, Knoop, Berkovich, and spherical indenters to understand the influence of Lu ion on micromechanical properties and fracture behavior of Y3Al5O12 (i.e. YAG for x = 0) single crystals. The largest (or smallest) values of hardness, elastic modulus, and fracture toughness were found for x = 1/3 (or 1/2). The indentation size effect was explained by four different models with the Hays-Kendall approach being the most suitable one to determine the true hardness. Fracture toughness values of YAG crystals obtained by the Vickers hardness method agreed with those obtained by scratching with a spherical indenter based on linear elastic fracture mechanics.  相似文献   

20.
《Ceramics International》2021,47(18):25514-25519
Y3+- and Co2+-substituted Sr1-xYxFe12-xCoxO19 (0 ≤ x ≤ 0.50) M-type hexaferrites were synthesized using a traditional oxide ceramic process to study their structural and static magnetic properties. The well-defined M-type phase structures of the pure and Y–Co co-substituted strontium ferrites were verified via XRD analysis. When the Y–Co substitution amount (x) exceeded 0.20, the Fe2O3, Y3Fe5O12, SrFe2O4, and CoFe2O4 impurity phases coexisted in the M-type strontium hexaferrite structure. The lattice parameters a and c increased when x ≤ 0.20; however, a further increase in the Y–Co substitution caused them to decrease. The X-ray density dx initially decreased when x ≤ 0.20, and subsequently increased with a further increase in Y–Co substitution. The density of the sintered samples ds exhibited a decreasing trend with the increasing Y–Co substitution, inducing the porosity to increase. The saturation magnetization Ms monotonously decreased with the increasing Y–Co substitution amount. The in-plane and out-of-plane coercivities, Hc(ip) and Hc(op), initially increased as x increased from 0 to 0.20. When x > 0.20, however, Hc(ip) exhibited a decreasing trend; particularly, a linear decrease was observed as x increased from 0.30 to 0.50. The squareness ratio S reached its maximum (79.6%) at x = 0.20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号