首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
In this study, Ba, Mg co-doped BNT-based ferroelectric ceramic (Ba0.2Na0.3Bi0.5)Ti0.9Mg0.1O3 is fabricated by conventional solid-state reaction to obtain high-temperature dielectric performance. The temperature dependent dielectric constant and dielectric loss are investigated to understand the high-temperature dielectric behavior of the ceramic. The results show that Ba, Mg co-doped BNT ceramic has a very low dielectric loss (about 0.006–0.023) in a wide temperature range of 200–400 °C with dielectric constant about 3200–3800. The complex impedance plots, temperature dependent conductivity and first principle results reveal that the low dielectric loss at high-temperature is mainly due to the Ba doping increases the migration barrier energy of oxygen ions in BNT. The oxygen ion conduction of BNT-based ceramics is restrained, so that the dielectric loss reduces significantly. The study provides a new BNT-based material with low dielectric loss and temperature- stable dielectric constant in a wide temperature range which has great value of high-temperature applications.  相似文献   

2.
In this work, the Pb0.8-yLayCo0.2TiO3 (y?=?0.2–0.8) (PLCT) nanoparticles were prepared by sol-gel method and further subjected to microwave heating. The formed tetragonal reflection planes of PLCT samples were on par with PbTiO3 (PT) and lanthanum cobalt titanate (LCT) tetragonal phases. Especially, for y?=?0.2–0.4, PLCT attained the PT structure while for y?=?0.6–0.8, PLCT acquired the LCT structure. That is, the structural transformation occurred from tetragonal PT to tetragonal LCT phases at higher La-contents. The high resolution transmission electron microscope (HRTEM) and field emission scanning electron microscopes (FESEM) showed complete formation of nanofibers at y?=?0.8 which may reveal drug delivery system applications. The Fourier transform infrared spectra (FTIR) were recorded in order to find the presence of metal oxide bonds. The dielectric properties evidenced that the transition temperatures (Tc) were found to be increasing from 713 to 783?K with increase of y-value. Furthermore, the temperature and frequency dependence of dielectric constant (ε′), dielectric loss (ε′′), ac-electrical conductivity (σac), real (M′) and imaginary (M′′) parts of complex dielectric modulus (M*) was described. The Power law was used to fit the logσac versus logω plots in order to determine the dc-conductivity (σdc) and exponent (n) values of the samples at room temperature (RT). Later on, the Arrhenius plots (lnσac versus T?1 plots) were drawn to find the activation energies. The results expressed the existence of two activation energies at low and high temperature regions due to slope change before and after Tc.  相似文献   

3.
The (1?x)BiFeO3xBaTiO3 (with x = 0.1, 0.2, 0.3, and 0.4) ceramics were fabricated successfully by solid‐state reaction method. Single‐phase perovskite was obtained in all ceramics, as confirmed by XRD technique. It was observed that 0.7BiFeO3–0.3BaTiO3 was the morphotropic phase boundary (MPB) between rhombohedral and cubic phases, as also revealed from ferroelectric and magnetic properties. The simulated and experimental X‐Ray Absorption Spectroscopy (XAS) study revealed that BT in 0.75BF‐0.25BT is possibly taken a rhombohedral structure. Furthermore, the rounded ferroelectric hysteresis loops observed for 0.9BiFeO3–0.1BaTiO3 and 0.8BiFeO3–0.2BaTiO3 compositions could be attributed to their microstructure and surface charge effects and electron transfer between Fe3+ and Fe2+ ions. It was also found that high dielectric constant of 0.9BiFeO3–0.1BaTiO3 composition was a result of grain and grain‐boundary effects, as observed in SEM micrographs. In addition, a strong signature of dielectric relaxation behavior was observed in this ceramic system with the activation energy 0.467 eV obtained from the Arrhenius' law. Finally, the local structure investigation with XAS technique provided additional information to better understand the electric and magnetic properties in the BF‐BT ceramic system.  相似文献   

4.
《Ceramics International》2022,48(2):2068-2074
Relaxor-ferroelectric (RFE) ceramics possess slender ferroelectric hysteresis loop and low remnant polarization (Pr). They have great potential to provide excellent energy-storage performance as dielectric energy-storage materials. Herein, a lead-free 0.8Ba0.4Sr0.6TiO3–0.2Sr0.7Bi0.2TiO3 (0.8BST–0.2SBT) RFE ceramic with high energy-storage performance has been realized successfully. The addition of Bi3+ and increase in Sr2+content at the A site of the BST can effectively inhibit the growth of grains for high breakdown strength (Eb). As a result, an ultrafine average grain size of 0.7 μm was obtained in 0.8BST–0.2SBT RFE ceramic, affording a high Eb of 300 kV/cm. Further investigation revealed that the mutual conversion of short-range polar nanoregions and long-range-ordered ferroelectric domains upon application and withdrawal of a 300 kV/cm applied electric field resulted in a high maximum polarization (Pmax) of 31 μC/cm2 and a low Pr of 2.5 μC/cm2. Hence, the 0.8BST–0.2SBT RFE ceramic simultaneously exhibited a high recoverable energy-storage density of 3.3 J/cm3 and a high energy-storage efficiency of 85% at 300 kV/cm. Additionally, a good energy-storage performance was reported over a temperature range of 50°C-120 °C and frequency from 10 to 1000 Hz, making the 0.8BST-0.2SBT RFE ceramic a potential lead-free dielectric energy-storage material.  相似文献   

5.
(1-x)Na2WO4xNi0.2Cu0.2Zn0.6Fe2O4 (NWO-NCZO) ceramic composites (x = 0–0.6) were successfully prepared by the cold sintering method under a uniaxial pressure of 200 MPa at 150°C for 30 min. The microstructures and electromagnetic properties of (1-x)NWO-xNCZO ceramic composites with different NCZO contents have been systematically investigated. The obtained biphasic NWO-NCZO ceramic composites possess dense microstructures. The 0.4NWO–0.6NCZO ceramic composite exhibits a matched relative permittivity and relative permeability of around 8 in the frequency range from 10 to 200 MHz, which is beneficial for impedance matching between antenna and free space. A prototype of microstrip antenna based on the developed NWO-NCZO ceramic composite is designed and to demonstrate its application in miniaturized antennas. The simulation results revealed that the size of the radiation patch of the antenna can be reduced by 60% yet with bandwidth being enhanced 26.5 times when the 0.4NWO–0.6NCZO ceramic composite is selected as the substrate instead of pure NWO ceramic.  相似文献   

6.
《Ceramics International》2023,49(5):7208-7213
A new kind of novel high-entropy rare earth garnet ceramics (HEREGCs, (Y0.2Eu0.2Er0.2Dy0.2Lu0.2)3(AlxFe1-x)5O12 (x = 0.4–0.6)) was designed and successfully synthesized by solid state reaction method. With the increase of Al content, the relative dielectric constant (εr′) at 100 Hz decreases from 4 × 104 to 1 × 102, while the dielectric loss (tanδ) increases from 0.93 to 2.65. The activation energy of grain boundary electrical conductivity (Egb) and grain electrical conductivity (Eg) are fitted according to Arrhenius’ law, which indicate that the increase of difference between Egb and Eg lead to the enhancement of dielectric properties. Our results provide the underlying insights needed to guide the study of colossal dielectric materials.  相似文献   

7.
In order to develop multiferroics with large magnetization and polarization, we have prepared a series of (1?x)[0.9BiFeO3–0.1DyFeO3]–xPbTiO3 [BDF–xPT] solid solution ceramics by solid state reaction. X-ray diffraction reveals that, with the increase of PbTiO3 concentration, the solid solution transforms from a rhombohedral to a tetragonal phase with the presence of a morphotropic phase boundary (MPB) region located at 0.28≤x≤0.40 at room temperature, in which the rhombohedral, tetragonal and orthorhombic phases coexist. The temperature dependence of the dielectric permittivity indicates that the Curie temperature decreases with the increasing amount of PbTiO3. Based upon the structural analysis and dielectric characterization, a preliminary phase diagram for the BDF?xPT pseudo-binary system has been proposed. It is found that the ceramics of compositions around the MPB exhibits much better dielectric properties with dielectric constant of the BDF–0.37PT ceramics reaching 459 at 1 kHz, confirming the beneficial effects of the MPB on the dielectric performance.  相似文献   

8.
A novel, high-entropy, perovskite-structured, solid solution La(Fe0.2Co0.2Ni0.2Cr0.2Mn0.2)O3 ceramic was successfully synthesized via high-temperature solid-state reaction. The crystal structure, microstructure, infrared emissivity, and thermophysical properties were investigated. The experimental results indicated that La(Fe0.2Co0.2Ni0.2Cr0.2Mn0.2)O3 exhibited an infrared emissivity as high as .92 in the near-infrared region of .76–2.50 μm. The thermal conductivity was 1.38–1.72 W m−1 K−1 in the temperature range of 25–1200°C.  相似文献   

9.
《Ceramics International》2023,49(18):29690-29698
With the trend of electronic information technology towards miniaturization, integration and intelligence, higher requirements are put forward for the performance of dielectric ceramic materials. In this paper, a series of doped samples Sm2O3-xZnO (x = 0, 0.1, 0.2, 0.4, 0.6, 0.8) were successfully prepared by the traditional solid state reaction method, and the complex dielectric properties of the ceramic samples were investigated as a function of temperature (100 K–400 K) and frequency (102–106 Hz) separately. A new phase Zn6.76Sm2.58O10.6 was found in all samples, and all samples were complex. At a higher temperature, 350 K, with the increase of ZnO doping content, the maximum dielectric constant is 434.7, the dielectric loss is as low as 0.0098, and the dielectric performance is significantly increased compared with room temperature. UV–Vis DRS test showed that the absorbance of the sample increased with the increase of ZnO content, and the side reaction showed that the dielectric constant and dielectric loss of the sample were improved under the action of UV light. These provide an experimental basis for the application of samarium based dielectric ceramics.  相似文献   

10.
Owing to the high melting points and high-temperature stability, transition-metal disilicides are potential components for aerospace, automotive, and industrial engineering applications. However, unwanted oxidation known as PEST oxidation severely limits their application owing to the formation of volatile transition metal oxides, especially in the temperature range of 500–1000 °C. To overcome this problem, a new class of high-entropy disilicides, (Mo0.2Nb0.2Ta0.2V0.2W0.2)Si2, was selected by first-principles calculations and then successfully fabricated using a hot-pressing sintering technique. Furthermore, the phase evolution, thermal expansion behavior, thermal conductivity, and oxidation behavior were systematically investigated. Compared with MoSi2, (Mo0.2Nb0.2Ta0.2V0.2W0.2)Si2 possessed a lower thermal conductivity (10.9–14.7 W·m?1·K?1) at 25–1000 °C, higher thermal expansion coefficients (8.6 ± 1.3–6 K–1) at 50–1200 °C, and especially an excellent thermal stability at 500–1000 °C owing to slow diffusion and selective oxidation. This work provides a strong foundation for the synthesis and application of high-entropy disilicides.  相似文献   

11.
《Ceramics International》2015,41(8):9285-9295
Rare earth Sm substituted Bi1−xSmxFeO3 with x=0, 0.025, 0.05, 0.075 and 0.10 polycrystalline ceramics were synthesized by a rapid liquid phase sintering method. The effect of varying composition of Sm substitution on the structural, dielectric, vibrational, optical and magnetic properties of doped BiFeO3 (BFO) ceramics have been investigated. X-ray diffraction patterns of the synthesized rare earth substituted multiferroic ceramics showed the pure phase formation with distorted rhombohedral structure with space group R3c. Good agreement between the observed and calculated diffraction patterns of Sm doped BFO ceramics in Rietveld refinement analysis of the X-ray diffraction patterns and Raman spectroscopy also confirmed the distorted rhombohedral perovskite structure with R3c symmetry. Dielectric measurements showed improved dielectric properties and magnetoelectric coupling around Néel temperature in all the doped samples. FTIR analysis establishes O–Fe–O and Fe–O stretching vibrations in BiFeO3 and Sm-doped BiFeO3. Photoluminescence (PL) spectra showed visible range emissions in modified BiFeO3 ceramics. The magnetic hysteresis measurements at room temperature and 5 K showed the increase in the magnetization with the increase in doping concentration of Sm which is due to the structural distortion and partial destruction of spin cycloid caused by Sm doping in BFO ceramics.  相似文献   

12.
A novel (0.67?x)BiFeO3–0.33BaTiO3xBaZrO3 lead‐free relaxor ferroelectric ceramic was developed by a solid‐state reaction method. Measurements of temperature‐dependent dielectric permittivity and the polarization/strain hysteresis loops demonstrated an obvious evolution of dielectric relaxor behavior at room temperature (RT) from nonergodic to ergodic states. A significantly enhanced electrostrain of ~0.37% at 7 kV/mm with a relatively small hysteresis of ~39% and a low‐frequency sensitivity was found at x = 0.04, showing large potential for actuator applications. This was basically attributed to a rapid response of forward and backward switching between ergodic and ferroelectric phases owing to similar free energies and large local random fields.  相似文献   

13.
Spinel–perovskite magnetoelectric (ME) nanocomposites xMgFe2O4–(1?x)BiFeO3, = 0.1, 0.2, 0.3, and 0.4 were synthesized by sol‐gel method and characterized by differential thermal analysis, X‐ray diffraction analysis, dielectric and magnetic measurements. The samples were calcined at various temperatures and then the effect of annealing temperature on structural and magnetic properties was studied. From transmission electron microscopy, the average crystal size was found to be 30–50 nm. The magnetic behavior is found to be dependent on annealing temperature and magnesium ferrite content. The dielectric behavior with frequency and temperature has been modified with the induction of magnesium ferrite. The relative change of dielectric constant with magnetic field was observed in the nanocomposites. This relative change of magnetic field‐induced dielectric constant can also be expressed by Δε ~ γM2 (where γ is magnetoelectric coupling coefficient).  相似文献   

14.
Single-phase BiFeO3 powders were prepared at a temperature of 200 °C by a hydrothermal synthesis. BiFeO3 ceramics were prepared with the powders by a conventional ceramic process. The BiFeO3 ceramics with no impurity phase were prepared at the sintering temperature of 650–800 °C. The dense microstructure was observed in the BiFeO3 ceramics sintered at a temperature of 700 °C and higher. BiFeO3 ceramics show linear M–H curves in low H, which are antiferromagnetic behaviors. The dielectric dispersion was observed at the frequency range of 10 kHz to 1 MHz in the BiFeO3 ceramic sintered at 700 °C or lower. The dielectric constant and loss of the BiFeO3 ceramics sintered at 750 °C or higher were about 85 and 0.4 at 100 kHz, respectively.  相似文献   

15.
To explore new relaxor‐PbTiO3 systems for high‐power and high‐temperature electromechanical applications, a ternary ferroelectric ceramic system of Pb(Lu1/2Nb1/2)O3–Pb(In1/2Nb1/2)O3–PbTiO3 (PLN–PIN–PT) have been investigated. The phase structure, dielectric, piezoelectric, and ferroelectric properties of the as‐prepared PLN–PIN–PT ceramics near the morphotropic phase boundary (MPB) were characterized. A high rhombohedral‐tetragonal phase transition temperature TR‐T of 165°C and a high Curie temperature TC of 345°C, together with a good piezoelectric coefficient d33 of 420 pC/N, were obtained in 0.38PLN–0.20PIN–0.42PT ceramics. Furthermore, for (0.8?x)PLN–0.2PIN–xPT ceramics, the temperature‐dependent piezoelectric coefficients, coercive fields and electric‐field‐induced strains were further studied. At 175°C, their coercive fields were found to be above 9.5 kV/cm, which is higher than that of PMN–PT and soft P5H ceramics at room temperature, indicating PLN–PIN–PT ceramics to be one of the promising candidates in piezoelectric applications under high‐driven fields. The results presented here could benefit the development of relaxor‐PbTiO3 with enhanced phase transition temperatures and coercive fields.  相似文献   

16.
MnxNi1?xFe2O4 (x=0.2, 0.4, 0.6) nanoparticles were synthesized by a polyethylene glycol (PEG)-assisted hydrothermal route. We present a systematic investigation on the structural, magnetic, electrical and dielectric properties of the products by using XRD, FT-IR, SEM, TGA, VSM and dielectric spectroscopy, respectively. Single phased cubic spinel structure was confirmed for all samples and the average crystallite size of the products was estimated using Line profile fitting and ranges between 6.5 and 11 nm. The nanoparticles have ferromagnetic nature with small coercivity. The samples showed semiconducting behavior which is revealed from temperature dependent conductivity measurements. Temperature and frequency dependent dielectric property; dielectric permittivity (ε) and ac conductivity (σAC) studies for the samples indicated that the dielectric dispersion curve for all samples showed usual dielectric dispersion confirming the thermally activated relaxation typical for Debye-like relaxation referring to it as the Maxwell–Wagner relaxation for the interfacial polarization of homogeneous double structure. The particle size, saturation magnetization, coercive field, conductivity and dielectric constant of the samples are strictly temperature dependent and increased with Mn concentration.  相似文献   

17.
0.6BiFeO3–0.4(Bi0.5K0.5)TiO3 (0.6BF–0.4BKT) ceramic samples with 0.0–4.0 mol% CuO were prepared by the solid‐state reaction. The CuO addition aided the densification of the samples and slightly increased the lattice constant. The relaxor‐like defuse dielectric peak of 0.6BF–0.4BKT became sharper with increasing the CuO content. Polarization–electric field curve of the undoped 0.6BF–0.4BKT was a pinched loop in the as‐sintered state, while that was a square hysteresis with a large remanent polarization of 48 μC/cm2 after the thermal quenching, demonstrating a strong domain wall pinning due to defect dipoles. We found that the CuO addition up to 2.0 mol% facilitates the polarization switching in the as‐sintered samples to increase the remanent polarization and the piezoelectric d33 coefficient. The results of the structural and electrical investigations suggested that the copper ion acts as a donor in 0.6BF–0.4BKT by compensating the potassium vacancy created by the evaporation of K2O during the calcination and sintering processes.  相似文献   

18.
《Ceramics International》2020,46(1):212-217
An investigation on the structural, magnetic, electrical properties of HoFeO3-substituted 0.7BiFeO3-0.3Ba0.8Ca0.2TiO3 solid solutions synthesized using conventional solid state reaction method was carried out. The structural study confirms that an additional orthorhombic (Pbnm) phase of HoFeO3 appears in the ceramic matrix and the presence of the aforementioned phase significantly influences the magnetic characteristics in the solid solutions. A detailed high temperature dielectric study suggests that the oxygen vacancies can be effectively controlled by the appropriate amount of substitution, successively regulating the ferroelectric as well as the leakage properties in the ceramics. Furthermore, the foremost remnant polarization and the feeble dielectric loss is achieved when the substitution content is x~0.2. Therefore, an appropriate amount of HoFeO3 substitution can be an effective way to modulate the multiferroic properties in the present ceramics.  相似文献   

19.
The present study reports the effect of sintering temperature on the proton dynamics of perovskite‐type Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3?δ (BSCZGY) by establishing a co‐relation between the grain‐boundary (GB) space charge effect, electrical conductivity and dielectric loss of the BSCZGY samples sintered at 1300°C, 1400°C, and 1550°C for 20 h in air. Although, the GBs are the main source of resistance in BaZrO3 based ceramic proton conductors, we show that the GB impedance disappeared above 450°C and 300°C, respectively, for BSCZGY samples sintered at 1300°C and 1400°C. Interestingly, the BSCZGY sample sintered at 1550°C showed absence of GB contribution to total conductivity even at 200°C. The GB electrostatic potential [?(0)] was found to vary between 0.35–0.38 V and 0.4–0.45 V, respectively, for the samples sintered at 1300°C and 1400°C at 200°C–300°C. The migration energy (Em) of the protons was found to be 0.71, 0.65 and 0.58 eV for the sample sintered at 1300°C, 1400°C and 1550°C, respectively.  相似文献   

20.
BiFeO3-PbZrO3-PbTiO3 ternary solid solution system was investigated for the development of piezoelectric ceramics with high Curie temperatures. The search for the morphotropic phase boundary (MPB) compositions in this ternary system started from mixing two MPB compositions: 0.70BiFeO3-0.30PbTiO3 and 0.52PbZrO3-0.48PbTiO3. The content of PbTiO3 was then further fine tuned in order to reach the appropriate volume fraction between the rhombohedral and tetragonal phases in the sintered ceramics. It was observed that the sintering temperature has a profound impact on the density, grain morphology, dielectric and ferroelectric properties of the ceramics. The composition that displays the best combined structure and properties was identified to be 0.648BiFeO3-0.053PbZrO3-0.299PbTiO3, with a Curie temperature TC of 560 °C, a remanent polarization Pr of 15.0 μC/cm2, and a piezoelectric coefficient d33 of 64 pC/N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号