首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history.  相似文献   

3.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake.  相似文献   

4.
The main molecular techniques which can be used to generate genetic markers, and the applications of these markers to studies of fish populations are outlined. Published and ongoing studies, in the authors' laboratories, on brown trout and Atlantic salmon are used to compare the resolution and applicability of allozyme, mitochondrial DNA and minisatellite (variable number of tandem repeats) markers for studies on population structuring, genetic variation within populations, and the impact of the accidental and deliberate introduction of non-native salmonids on the genetic make-up of natural populations.  相似文献   

5.
Threespine stickleback populations are model systems for studying adaptive evolution and the underlying genetics. In lakes on the Haida Gwaii archipelago (off western Canada), stickleback have undergone a remarkable local radiation and show phenotypic diversity matching that seen throughout the species distribution. To provide a historical context for this radiation, we surveyed genetic variation at >1000 single nucleotide polymorphism (SNP) loci in stickleback from over 100 populations. SNPs included markers evenly distributed throughout genome and candidate SNPs tagging adaptive genomic regions. Based on evenly distributed SNPs, the phylogeographic pattern differs substantially from the disjunct pattern previously observed between two highly divergent mtDNA lineages. The SNP tree instead shows extensive within watershed population clustering and different watersheds separated by short branches deep in the tree. These data are consistent with separate colonizations of most watersheds, despite underlying genetic connections between some independent drainages. This supports previous suppositions that morphological diversity observed between watersheds has been shaped independently, with populations exhibiting complete loss of lateral plates and giant size each occurring in several distinct clades. Throughout the archipelago, we see repeated selection of SNPs tagging candidate freshwater adaptive variants at several genomic regions differentiated between marine–freshwater populations on a global scale (e.g. EDA, Na/K ATPase). In estuarine sites, both marine and freshwater allelic variants were commonly detected. We also found typically marine alleles present in a few freshwater lakes, especially those with completely plated morphology. These results provide a general model for postglacial colonization of freshwater habitat by sticklebacks and illustrate the tremendous potential of genome‐wide SNP data sets hold for resolving patterns and processes underlying recent adaptive divergences.  相似文献   

6.
Marble trout, endemic to the Adriatic drainage basin, is severely threatened by hybridisation with non-native brown trout. In the present study, we analysed 12 microsatellite DNA loci to assess genetic population structure and differentiation between sympatric phenotypic marble and brown trout at nine sampling sites in the upper Etsch/Adige River system. F ST and AMOVA analyses revealed significant genetic differentiation between marble and brown trout samples. Thus, admixture between brown and marble trout appears to be incomplete. However, factorial correspondence analysis depicted marble trout, Atlantic brown trout and intermediate genotypes. Bayesian-based individual assignment tests identified indigenous marble trout at five sampling sites. In four other samples no ‘pure’ marble trout were detected. Bidirectional, first-generation hybridisation, involving both sexes of both parental species was observed. In locations where ‘pure’ marble trout still exist, post-F1 hybridisation appears to be directed towards brown trout. This has likely slowed the rate of hybridisation between the two trout species and the decline of relic marble trout populations. Based on these results, restoration management actions are proposed, such as the abandonment of brown trout stocking activities, sharper angling policies, establishment of indigenous marble trout breeding strains and the elaboration of a conservation priority list.  相似文献   

7.
We assessed variation in mitochondrial DNA (mtDNA) by restriction fragment length polymorphism (RFLP) analysis and in nuclear genes by allozyme analysis among sympatric pairs of limnetic and benthic ecotypes of whitefish (Coregonus) coexisting in three lakes of southern Yukon to address three evolutionary questions regarding their origins. Are sympatric low and high gill-raker count ecotypes genetically differentiated? Are they issued from monophyletic or polyphyletic evolutionary events? If they are polyphyletic in origins, did they originate from multiple allopatric speciation events or intralacustrine radiation? Our results corroborated previous genetic and ecological studies of these ecotypes, indicating that they represent genetically distinct reproductive units, and therefore refuting the hypothesis of phenotypic polymorphism within a single population. However, the amount of gene flow between ecotypes varied among lakes, correlating with the extent of morphological differentiation and the potential for premating reproductive isolation. The results indicated a polyphyletic origin of ecotypes whereby each of them have been expressed independently more than once. In the two lakes of Squanga Creek drainage, the existence of sympatric pairs was best explained by the secondary contact of two monophyletic whitefish groups that evolved in allopatry during the last glaciation events. In Dezadeash L. of Alsek R. drainage, our results could not verify either sympatric or allopatric (or microallopatric) origin of ecotypes. Regardless of the mode of speciation involved in their origins, these sympatric whitefish populations provided further evidence that Pleistocene glaciation events created conditions favoring rapid divergence and phenotypic differentiation among northern freshwater fishes.  相似文献   

8.
The Hardangervidda in southern Norway, the largest mountain plateau in Europe, has thousands of lakes and streams, mainly between 1000 and 1300 m above sea level, where brown trout is the only fish species. To describe the current genetic diversity of brown trout in this area, a total of 863 fish from 20 lakes were genotyped with eleven microsatellites. Most diversity is within lake populations, but diversity among geographical groups and populations within groups was significant, too. Neighbor-joining, principle coordinate analysis and Bayesian clustering show three major geographic groups in accordance with the river systems. Bias was caused by recent stocking in two lakes. Low/no genetic differentiation among some populations indicates that intermixing is common when lakes are well-connected, as was also shown by assignment test. We recommend preserving the genetic diversity of brown trout in this unique area by managing stocking in lake systems according to genetic structure.  相似文献   

9.
P. E. Jorde  N. Ryman 《Genetics》1996,143(3):1369-1381
We studied temporal allele frequency shifts over 15 years and estimated the genetically effective size of four natural populations of brown trout (Salmo trutta L.) on the basis of the variation at 14 polymorphic allozyme loci. The allele frequency differences between consecutive cohorts were significant in all four populations. There were no indications of natural selection, and we conclude that random genetic drift is the most likely cause of temporal allele frequency shifts at the loci examined. Effective population sizes were estimated from observed allele frequency shifts among cohorts, taking into consideration the demographic characteristics of each population. The estimated effective sizes of the four populations range from 52 to 480 individuals, and we conclude that the effective size of natural brown trout populations may differ considerably among lakes that are similar in size and other apparent characteristics. In spite of their different effective sizes all four populations have similar levels of genetic variation (average heterozygosity) indicating that excessive loss of genetic variability has been retarded, most likely because of gene flow among neighboring populations.  相似文献   

10.
One main challenge in conservation biology is to preserve genetic variability and adaptive variation within and among populations. However, constant anthropogenic habitat modifications have severe effects on the evolutionary dynamics shaping wild populations and pose a serious threat to the natural evolution of biodiversity. The aim of the present study was to unravel the genetic structuring of brown trout (Salmo trutta) populations in the largest freshwater catchment in Ireland, whose habitats have experienced major human-mediated changes over at least two centuries. A total of 419 juvenile fish were sampled from nine main rivers in the Corrib catchment and were genotyped using 12 microsatellites. Both Bayesian clustering and F ST-based analyses of genetic variance sorted these populations into five main genetically distinct groups, characterized by different extent of genetic differentiation among populations. These groups were also characterized by some degree of admixture, which can be partly explained by recent gene flow. Overall, the study suggests that the Corrib trout may conform to a metapopulation model with local populations that show different degrees of isolation and are interconnected by various level of gene flow. Results add further insights into metapopulation evolutionary dynamics and provide a useful basis to implement appropriate conservation strategies.  相似文献   

11.
1. Cryptic species diversity poses evolutionary questions about its origin and maintenance, and ecological questions about the coexistence of seemingly identical species. 2. We examine patterns of morphological and life history differentiation in three sympatric cryptic species of freshwater amphipods within the Hyalella azteca species complex. These species are separated by extensive molecular evolution, but appear similar in phenotype. Species were collected from the littoral zone of a small kettle lake in Michigan, U.S.A., and identified to species by molecular genetic methods. 3. Two of the species were similar, differing only in female size, whereas the third was larger in body size and had larger clutches of smaller eggs than the other two. There were differences between the species also in pleon spine length and antennal segment number. 4. An analysis of allozyme variation among the cryptic species in three lakes suggests that the species are reproductively isolated within lakes. 5. We suggest that phenotypic similarity of these species is maintained by size‐selective predation by fish. The small, but statistically significant, differences in body size may form the axis for a tradeoff between resource exploitation and predator avoidance, a condition that can foster coexistence of phenotypically similar species.  相似文献   

12.
The Iberian Peninsula contains diverse populations of freshwater fish, with major river basins comprising differentiated biogeographic units. The Duero River flows through the North‐Western Iberian Peninsula and is one of the most important rivers within the Iberian glacial refuge. Brown trout (Salmo trutta) populate this whole basin, and studies using both allozyme and microsatellite loci have detected a geographically sorted distribution of genetic variation in this species. In this work, sequences of the mitochondrial control region obtained from 299 brown trout from the Duero River were compared with other Iberian and European datasets. Two differentiated haplotype groups were detected inside the Duero River basin. One of them was related to the Atlantic (AT) lineage that is present in Northern European populations, whereas the other comprised an unique group that was restricted to the inner region of the basin. The amount of divergence of this Duero group from the other brown trout populations studied is consistent with a new trout lineage (Duero, DU) that is endemic to this river basin and that diverged from other Atlantic populations during the Pleistocene. The distribution of the DU and AT quaternary lineages in the Duero River was consistent with the ichthyological pattern described in the basin that originated during the Miocene–Pliocene. Evidence of selective processes that favour the haplotypes of the DU lineage may explain this discrepancy.  相似文献   

13.
14.
Population structure of pests is an important issue when designing management strategies to optimize control measures. In this study, we investigated a spatial pattern of genetic and phenotypic variation within seven urban and within six rural populations of Culex pipiens from Vojvodina Province (Serbia) incorporating landscape genetic methods (using allozyme data) and wing size and shape (using geometric morphometric approach). Comparing rural samples, no strong genetic groupings of individuals were detected. Nevertheless, traditional approaches where individuals are pre‐assigned to populations, including F statistics and amova (analysis of molecular variance), revealed low, but significant genetic differentiation among samples. Similarly, phenotypic data (wing size and shape) indicated some level of heterogeneity among rural samples. Contrary to genetic homogeneity found within rural biotype, the individual‐based structuring characterized urban biotype. Geneland revealed the presence of two genetic clusters within urban group which is in concordance with FST and amova results. These results showed that sample from Novi Sad (NS) is a distinct genetic unit, which has been likely resulted in intensive insecticide use over several decades. Furthermore, phenotypic differentiation supported the existence of spatial structuring. Therefore, complementary use of molecular markers and phenotypic traits may be a powerful tool for revealing hidden spatial diversity within Cx. pipiens.  相似文献   

15.
Symbiotic relationships have contributed greatly to the evolution and maintenance of biological diversity. On the Great Barrier Reef, species of obligate coral-dwelling fishes (genus Gobiodon) coexist by selectively recruiting to colonies of Acropora nasuta that differ in branch-tip colour. In this study, we investigate genetic variability among sympatric populations of two colour morphs of A. nasuta ('blue-tip' and 'brown-tip') living in symbiosis with two fish species, Gobiodon histrio and G. quinquestrigatus, respectively, to determine whether gobies are selecting between intraspecific colour polymorphisms or cryptic coral species. We also examine genetic differentiation among coral populations containing both these colour morphs that are separated by metres between local sites, tens of kilometres across the continental shelf and hundreds of kilometres along the Great Barrier Reef. We use three nuclear DNA loci, two of which we present here for the first time for Acropora. No significant genetic differentiation was detected between sympatric colour morphs at these three loci. Hence, symbiotic gobies are selecting among colour morphs of A. nasuta, rather than cryptic species. Significant genetic geographical structuring was observed among populations, independent of colour, at regional (i.e. latitudinal separation by < 500 km) and cross-shelf (< 50 km) scales, alongside relative homogeneity between local populations on within reef scales (< 5 km). This contrasts with the reported absence of large-scale genetic structuring in A. valida, which is a member of the same species group as A. nasuta. Apparent differences in biogeographical structuring between species within the A. nasuta group emphasize the need for comparative sampling across both spatial (i.e. within reefs, between reefs and between regions) and taxonomic scales (i.e. within and between closely related species).  相似文献   

16.
The Caspian Sea, the largest inland closed water body in the world, has numerous endemic species. The Caspian brown trout (Salmo trutta caspius) is considered as endangered according to IUCN criteria. Information on phylogeography and genetic structure is crucial for appropriate management of genetic resources. In spite of the huge number of studies carried out in the Salmo trutta species complex across its distribution range, very few data are available on these issues for S. trutta within the Caspian Sea. Mitochondrial (mtDNA control region) and nuclear (major ribosomal DNA internal transcribed spacer 1, ITS-1, and ten microsatellite loci) molecular markers were used to study the phylogeography, genetic structure, and current captive breeding strategies for reinforcement of Caspian trout in North Iranian rivers. Our results confirmed the presence of Salmo trutta caspius in this region. Phylogenetic analysis demonstrated its membership to the brown trout Danubian (DA) lineage. Genetic diversity of Caspian brown trout in Iranian Rivers is comparable to the levels usually observed in sustainable anadromous European brown trout populations. Microsatellite data suggested two main clusters connected by gene flow among river basins likely by anadromous fish. No genetic differences were detected between the hatchery sample and the remaining wild populations. While the current hatchery program has not produced detectable genetic changes in the wild populations, conservation strategies prioritizing habitat improvement and recovering natural spawning areas for enhancing wild populations are emphasized.  相似文献   

17.
Detecting population subdivision when apparent barriers to gene flow are lacking is important in evolutionary and conservation biology. Recent research indicates that intraspecific population complexity can be crucial for maintaining a species′ evolutionary potential, productivity, and ecological role. We monitored the genetic relationships at 14 allozyme loci among ~4,000 brown trout (Salmo trutta) collected during 19 years from two small interconnected mountain lakes (0.10 and 0.17 km2, respectively) in central Sweden. There were no allele frequency differences between the lakes. However, heterozygote deficiencies within lakes became obvious after a few years of monitoring. Detailed analyses were then carried out without a priori grouping of samples, revealing unexpected differentiation patterns: (i) the same two genetically distinct (F ST ≥ 0.10) populations occur sympatrically at about equal frequencies within both lakes, (ii) the genetic subdivision is not coupled with apparent phenotypical dichotomies, (iii) this cryptic structure remains stable over the two decades monitored, and (iv) the point estimates of effective population size are c. 120 and 190, respectively, indicating that genetic drift is important in this system. A subsample of 382 fish was also analyzed for seven microsatellites. The genetic pattern does not follow that of the allozymes, and in this subsample the presence of multiple populations would have gone undetected if only scoring microsatellites. Sympatric populations may be more common than anticipated, but difficult to detect when individuals cannot be grouped appropriately, or when markers or sample sizes are insufficient to provide adequate statistical power with approaches not requiring prior grouping.  相似文献   

18.
Understanding the influence of landscape features on population differentiation is fundamental to evolutionary biology studies. We examined spatial patterns of genetic and phenotypic variability among Galaxias maculatus populations in a complex of four postglacial lakes in northwestern Patagonia differing in size and connectivity among them. A hierarchical Bayesian analysis grouped the individuals collected from eleven localities into three genetic clusters, first defining the populations of the two large lakes and separating the two small lakes in subsequent analysis. Genetic structuring was restricted within large lakes. It is known that the larval stage of Galaxias maculatus migrate to the limnetic zone of Patagonian lakes, possibly exerting an homogenizing effect on gene flow within lakes. Gene flow asymmetry and divergences among lakes can be explained by a combination of landscape characteristics and the presence of predators in the short streams that connect them. Individuals from the small lakes are the most divergent morphologically and genetically. The population in the isolated Redonda Lake, exhibits meristic differences as well, suggesting strong drift and environmental effects. This population is likely to have been isolated following the decline in water level of a paleolake that existed in this region approximately 13.2 kya BP. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

19.
The conservation and management of endangered species requires information on their genetic diversity, relatedness and population structure. The main genetic markers applied for these questions are microsatellites and single nucleotide polymorphisms (SNPs), the latter of which remain the more resource demanding approach in most cases. Here, we compare the performance of two approaches, SNPs obtained by restriction‐site‐associated DNA sequencing (RADseq) and 16 DNA microsatellite loci, for estimating genetic diversity, relatedness and genetic differentiation of three, small, geographically close wild brown trout (Salmo trutta) populations and a regionally used hatchery strain. The genetic differentiation, quantified as FST, was similar when measured using 16 microsatellites and 4,876 SNPs. Based on both marker types, each brown trout population represented a distinct gene pool with a low level of interbreeding. Analysis of SNPs identified half‐ and full‐siblings with a higher probability than the analysis based on microsatellites, and SNPs outperformed microsatellites in estimating individual‐level multilocus heterozygosity. Overall, the results indicated that moderately polymorphic microsatellites and SNPs from RADseq agreed on estimates of population genetic structure in moderately diverged, small populations, but RADseq outperformed microsatellites for applications that required individual‐level genotype information, such as quantifying relatedness and individual‐level heterozygosity. The results can be applied to other small populations with low or moderate levels of genetic diversity.  相似文献   

20.
Genetic variation in nine wild brown trout (Salmo trutta L.) populations was studied by means of allozyme and microsatellite markers. All brown trout populations were clearly separated into two clusters that represented the Sil and Duero basins. Although both markers revealed a strong genetic differentiation between basins, microsatellite loci resulted much more accurate when population structure at the intrabasin level was analysed. Also pairwise multilocus FST estimates and assignment tests of individual fish to the set of sampled populations demonstrated a much higher efficiency of microsatellites compared to allozymes. The analysis of both markers provides new insights in defining the conservation units at this local area and confirms the existence of a recognized sub-lineage in the Duero basin. The management implications of these findings are discussed and changes in trout release activity are recommended to avoid mixing of trout gene pools mainly in the Sil basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号