共查询到20条相似文献,搜索用时 0 毫秒
1.
A. Haghshenas M. Rafati NasrM.H. Rahimian 《International Communications in Heat and Mass Transfer》2010
In the present work, natural convection in an open-ended square cavity packed with porous medium is simulated. The double-population approach is used to simulate hydrodynamic and thermal fields, and the Taylor series expansion and the least-squares-based lattice Boltzmann method has been implemented to extend the thermal model. The effect of a porous medium is taken into account by introducing the porosity into the equilibrium distribution function and adding a force term to the evolution equation. The Brinkman–Forchheimer equation, which includes the viscous and inertial terms, is applied to predict the heat transfer and fluid dynamics in the non-Darcy regime. The present model is validated with the previous literature. A comprehensive parametric study of natural convective flows is performed for various values of Rayleigh number and porosity. It is found that these two parameters have considerable influence on heat transfer. 相似文献
2.
GH.R. KefayatiS.F. Hosseinizadeh M. Gorji H. Sajjadi 《International Communications in Heat and Mass Transfer》2011,38(6):798-805
Natural convection in enclosures using water/SiO2 nanofluid is simulated with Lattice Boltzmann method (LBM). This investigation compared with other numerical methods and found to be in excellent agreement. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid, Ra = 103-105, the volumetric fraction of nanoparticles between 0 and 4% and aspect ratio (A) of the enclosure between 0.5 and 2. The thermal conductivity of nanofluids is obtained on basis of experimental data. The comparisons show that the average Nusselt number increases with volume fraction for the whole range of Rayleigh numbers and aspect ratios. Also the effect of nanoparticles on heat transfer augments as the enclosure aspect ratio increases. 相似文献
3.
H. Nemati M. FarhadiK. Sedighi E. FattahiA.A.R. Darzi 《International Communications in Heat and Mass Transfer》2010
Lattice Boltzmann Method is applied to investigate the mixed convection flows utilizing nanofluids in a lid-driven cavity. The fluid in the cavity is a water-based nanofluid containing Cu, Cuo or Al2O3 nanoparticles. The effects of Reynolds number and solid volume fraction for different nanofluids on hydrodynamic and thermal characteristics are investigated. The effective thermal conductivity and viscosity of nanofluid are calculated by Chon and Brinkman models, respectively. The results indicate that the effects of solid volume fraction grow stronger sequentially for Al2O3, Cuo and Cu. In addition the increases of Reynolds number leads to decrease the solid concentration effect. 相似文献
4.
In this paper, we investigate heat transfer by natural convection in an open cavity in which a uniform heat flux is applied to the inside active wall facing the opening with slots. Conservation equations are solved by finite difference–control volume numerical method. The relevant governing parameters are: the Rayleigh numbers from 103 to 106, the Prandtl number, Pr = 0.7, constant for air, the cavity aspect ratio, A = L/H = 1. Number of slots N is varied from 2 to 8 and the dimensionless opening ratio OR from 0.1 to 0.6. We found that the Nusselt number and the volume flow rate are both increasing functions of the Rayleigh number; they are a decreasing function of the number of slots and increasing function of the opening ratio, though there is an optimum opening ratio at high Rayleigh numbers. 相似文献
5.
In the present study, the effect of inclination on mixed convection heat transfer and fluid flow in a lid‐driven cavity with a wavy wall is investigated using the lattice Boltzmann method. The double‐population approach with second‐order accuracy at velocity and temperature fields is used to simulate the curved boundary in the lattice Boltzmann method. The problem is investigated for different Richardson numbers (0.1 ≤ Ri ≤ 10), curve amplitudes (0.05 ≤ A ≤ 0.25), and inclination angles (0 ≤ θ ≤ 180) when the Reynolds number is equal to 100. Results show that the inclination phenomenon has important effects on both flow and temperature fields at high Richardson numbers. It is also found that the inclination loses its role on mixed convection heat transfer from the wavy wall by the increase of the curve amplitude of the wavy wall for all Richardson numbers. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21005 相似文献
6.
This study is aimed to investigate the natural convection heat transfer from discrete heat sources (similar to heated microchips) using Bhatnagar‐Gross‐Krook lattice Boltzmann method via graphics process unit computing. The simulation is carried out separately for three and six heated blocks model for different Rayleigh numbers and fixed Prandtl number, (air). The uniformly heated blocks are placed at the bottom wall inside a rectangular enclosure. The enclosure is maintained by the cold temperature at its left and right walls. The top and bottom surface is maintained by adiabatic conditions apart from the regions where blocks are attached to the bottom wall. The numerical code is validated with the benchmark heat transfer problem of side‐heated square cavity as well as with an experimental study for one discrete heat source. The rate of heat transfer is presented in terms of the local Nusselt and average Nusselt number for each block. It is found that the heat transfer rate becomes maximized in the leftmost and rightmost blocks due to the adjacent cold walls. It is found that the number of blocks and their positions play a substantial role in determining their collective performance on the heat transfer rate. 相似文献
7.
E. Fattahi M. Farhadi K. Sedighi 《International Communications in Heat and Mass Transfer》2011,38(8):1135-1141
Mixed convection heat transfer in eccentric annulus was simulated numerically by lattice Boltzmann model (LBM) based on multi-distribution function double-population approach. The effect of eccentricity on heat transfer at various locations was examined at Ra = 104 and σ = 2. Velocity and temperature distributions as well as Nusselt number are obtained. The results are validated with published results and shown that multi-distribution function approach can evaluate the velocity and temperature fields in curved moving boundaries with a good accuracy in comparison with the previous studies. The results show that the average Nusselt number increases when the inner cylinder moves downward regardless of the radial position. 相似文献
8.
A.A. Mohamad R. Bennacer M. El-Ganaoui 《International Journal of Thermal Sciences》2010,49(10):1944-1953
Double dispersion in an open end cavities are simulated using Lattice Boltzmann Method (LBM). The flow is driven by the buoyancy effect due to the heated vertical wall and species concentration at the heated wall of the cavity (closed end). The paper is intended to address the physics of flow, heat and mass transfers in open ended cavities and close end slots. Prandtl number (Pr) is fixed to 0.71 (air) for the thermal Rayleigh number (RaT) of 104, 105 and 106. The results are presented for moderate Lewis number of 2, 4 and 8 and for a range of buoyancy ratio, N, (species to thermal). The species concentration induced buoyancy force either aids or opposes the thermally driven flow, which is determined by the value of buoyancy ratio (positive or negative, respectively). Interesting flow patterns were predicted for opposing buoyancy forces. 相似文献
9.
In this paper the effects of a magnetic field on mixed convection flow in a two‐sided lid‐driven cavity have been analyzed by the lattice Boltzmann method (LBM). The Hartmann number varied from Ha = 0 to 100. The study has been conducted for different Richardson numbers (Ri) from 0.01 to 100 while the direction of the magnetic field was investigated in the x‐direction. Consequences demonstrate that the heat transfer augments with an increment of the Richardson number for different Hartmann numbers for two cases. The heat transfer declines with the growth of the magnetic field for various Richardson numbers for two cases. The difference between the values of heat transfer for the two cases at variant parameters is negligible but the trend of fluid flow for the two cases is multifarious. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20402 相似文献
10.
Y. Zhou R. Zhang I. Staroselsky H. Chen 《International Journal of Heat and Mass Transfer》2004,47(22):4869-4879
The capability of simulating natural and forced convection has been recently developed and integrated into PowerFLOW, a general purpose CFD solver based on the lattice Boltzmann algorithm. Several benchmark tests have been performed to validate this buoyancy model. Two typical cases of Rayleigh-Bénard convection with the Rayleigh number slightly above (Ra=2000) and below (Ra=1500) the critical Rayleigh number of 1708 were tested to verify the conceptual and algorithmic correctness of the buoyancy model. Then simulations of turbulent natural convection in an enclosed tall cavity with two different Rayleigh numbers, Ra=0.86×106 and Ra=1.43×106, were carried out and found to be in a very good agreement with the experiments of Betts and Bokhari. 相似文献
11.
D.E. Ameziani R. Bennacer K. Bouhadef A. Azzi 《International Journal of Thermal Sciences》2009,48(12):2255-2263
The problem of unsteady natural convection heat transfer in a vertical, open ended, porous cylinder heated laterally with a sinusoidal time variation of the temperature has been investigated numerically. The model considered is the classical Darcian flow coupled with the energy equation. In the case of constant wall temperature, two types of chimney flows take place, with and without fluid recirculation. The present problem depends on the filtration Rayleigh number (Ra), the aspect ratio (A) and the inlet–outlet conditions (Bi). For low dimensionless temperature amplitudes (XA < 0.5) in the sinusoidal time variation, the resulting heat transfer is found to be globally equivalent to the case of constant wall temperature. The observed relative difference between sinusoidal and constant wall temperature is less than 5%. This difference decreases as the Ra is reduced. 相似文献
12.
Numerical modeling of the electric field effect on natural convection in the partially open square cavities is investigated. The interactions between electric, flow, and temperature fields are analyzed by using a computational fluid dynamics technique. The results indicate that the flow and heat transfer enhancements are the decreasing function of Rayleigh number. Moreover, the volume flow rate and heat transfer coefficient are substantially improved by the electric field effect, especially at the low aperture size and high aperture position. The effect of number of electrodes and inclined angle to the flow and heat transfer enhancements are also achieved. 相似文献
13.
Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid 总被引:1,自引:0,他引:1
M. Sheikholeslami M. Gorji-BandpayD.D. Ganji 《International Communications in Heat and Mass Transfer》2012
In this study, natural convection in a concentric annulus between a cold outer square and heated inner circular cylinders in presence of static radial magnetic field is investigated numerically using the lattice Boltzmann method. The inner and outer cylinders are maintained at constant uniform temperatures and it is assumed that all walls are insulating the magnetic field. The numerical investigation is carried out for different governing parameters namely; the Hartmann number, nanoparticles volume fraction and Rayleigh number. The effective thermal conductivity and viscosity of nanofluids are calculated using the Maxwell–Garnetts (MG) and Brinkman models, respectively. Also, the multi-distribution-function (MDF) model is used for simulating the effect of uniform magnetic field. The results reveal that the average Nusselt number is an increasing function of nanoparticle volume fraction as well as the Rayleigh number, while it is a decreasing function of the Hartmann number. 相似文献
14.
M.M. Rahman S. ParvinR. Saidur N.A. Rahim 《International Communications in Heat and Mass Transfer》2011,38(2):184-193
The development of magnetic field effect on mixed convective flow in a horizontal channel with a bottom heated open enclosure has been numerically studied. The enclosure considered has rectangular horizontal lower surface and vertical side surfaces. The lower surface is at a uniform temperature Th while other sides of the cavity along with the channel walls are adiabatic. The governing two-dimensional flow equations have been solved by using Galarkin weighted residual finite element technique. The investigations are conducted for different values of Rayleigh number (Ra), Reynolds number (Re) and Hartmann number (Ha). Various characteristics such as streamlines, isotherms and heat transfer rate in terms of the average Nusselt number (Nu), the Drag force (D) and average bulk temperature (θav) are presented. The results indicate that the mentioned parameters strongly affect the flow phenomenon and temperature field inside the cavity whereas in the channel these effects are less significant. 相似文献
15.
In this paper, the lattice Boltzmann method is used to study the acoustic waves propagation inside a differentially heated square enclosure filled with air. The waves are generated by a point sound source located at the center of this cavity. The main aim of this simulation is to simulate the interaction between the thermal convection and the propagation of these acoustic waves. The results have been validated with those obtained in the literature and show that the effect of natural convection on the acoustic waves propagation is almost negligible for low Rayleigh numbers (Ra ≤ 104), which begins to appear when the Rayleigh number begins to become important (Ra ≥ 105) and it becomes considerable for large Rayleigh numbers (Ra ≥ 106) where the thermal convection is important. 相似文献
16.
Amaresh Dalal Manab Kumar Das 《International Journal of Heat and Mass Transfer》2005,48(18):3833-3854
Natural convection in two-dimensional enclosure with three flat and one wavy walls is numerically investigated. One wall is having a sinusoidal temperature profile. Other three walls including the wavy wall are maintained at constant cold temperature. This problem is solved by SIMPLE algorithm with deferred QUICK scheme in curvilinear co-ordinates. The tests were carried out for different inclination angles, amplitudes and Rayleigh numbers while the Prandtl number was kept constant. The geometrical configurations considered were namely one-, two- and three-undulations.The results obtained show that the angle of inclination affects the flow and heat transfer rate in the cavity. With increase in amplitude, the average Nusselt number on the wavy wall is appreciably high at low Rayleigh number. Increasing the number of undulations beyond two is not beneficial. The trend of local Nusselt number is wavy. 相似文献
17.
The present study addresses the effect of various schemes for applying an external force term on the accuracy and performance of the thermal lattice Boltzmann method (LBM) for simulation of free convection problems. Herein, the forcing schemes of Luo, shifted velocity method, Guo, and exact difference method are applied by considering three velocity discrete models of D2Q4, D2Q5, and D2Q9. The accuracy and performance of these schemes are evaluated with the simulation of three natural convection problems, namely, free convection in a closed cavity, in a square enclosure with a hot obstacle inside, and the Rayleigh-Benard problem. The obtained results based on the present thermal LBM with different forcing schemes and velocity discrete models are compared with the existing experimental and numerical data in the literature. This comparison study indicates that imposing all employed forcing schemes leads to similar performance for the simulation of free convection problems studied at the middle range of Rayleigh numbers. It is found that the Luo forcing scheme is simple for implementation in comparison with the other three forcing schemes and provides the results with acceptable accuracy at moderate Rayleigh numbers. At higher Rayleigh numbers, however, the Guo scheme is not only numerically stable but a more precise forcing scheme in comparison with the other three methods. It is illustrated that employing the discrete velocity model of D2Q4 has more appropriate numerical stability along with less computational cost in comparison with two other discrete velocity models for simulation of natural convection heat transfer. 相似文献
18.
Amaresh Dalal Manab Kumar Das 《International Journal of Heat and Mass Transfer》2005,48(14):2986-3007
Natural convection in two-dimensional enclosure with three flat and one wavy walls is numerically investigated. One wall is having a sinusoidal temperature profile. Other three walls including the wavy wall are maintained at constant cold temperature. This problem is solved by SIMPLE algorithm with deferred QUICK scheme in curvilinear co-ordinates. The tests were carried out for different inclination angles, amplitudes and Rayleigh numbers while the Prandtl number was kept constant. The geometrical configurations considered were namely one, two and three undulations.The results obtained show that the angle of inclination affects the flow and heat transfer rate in the cavity. With increase in amplitude, the average Nusselt number on the wavy wall is appreciably high at low Rayleigh number. Increasing the number of undulations beyond two is not beneficial. The trend of local Nusselt number is wavy. 相似文献
19.
The present study numerically investigates the opposing mixed convection arises from jet impingement cooling of a heated bottom surface of an open cavity in a horizontal channel filled with porous medium. The FeCrAlY foam is considered in the present study with a porosity of 0.867. The heat transfer characteristics are investigated with governing parameters in the range of Rayleigh number (50 ≤ Ra ≤ 150), Péclet number (1 ≤ Pe ≤ 1000) and dimensionless cavity depth (0 ≤ H ≤ 0.4). The results show that, the average Nusselt numbers decreases with the increase in dimensionless cavity depth. The opposing mixed convection is demonstrated to cause deterioration in average Nusselt number for fluid at certain Peclet number. The average Nusselt number for fluid is found to increase with the increase in Rayleigh number but the effect of Rayleigh number become insignificant at high Peclet number (Pe > 500). 相似文献
20.
In the present study, the effects of Cu and CuO nanoparticles' presence on mixed convection heat transfer in a lid‐driven cavity with a corrugated wall are investigated using the lattice Boltzmann method. The boundary fitting method with second‐order accuracy at both velocity and temperature fields is used to simulate the curved boundaries in the LBM. The problem is investigated for different Richardson numbers (0.1–10), volume fractions of nanoparticles (0–0.05), curve amplitudes (0.05–0.25), and phase shifts of corrugated wall (0–270) when the Reynolds number is equal to 25. The volume fraction of added nanoparticles to the water‐based fluid is less than 0.05 to make dilute suspensions. Results show that adding nanoparticles enhances the rate of heat transfer. It is found that nanoparticles have significant effects on both fluid flow and heat transfer of the mixed convection, especially for low Richardson numbers. A comparison between Cu and CuO nanoparticles shows the Cu nanoparticles have a better effect on heat transfer enhancement for all tested conditions. The results also represent the effective role of a corrugated wall on the rate of nanofluid heat transfer. It is observed that increasing the wavy wall's amplitude leads to a decrease of the average Nusselt numberfor a high Richardson number. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21024 相似文献