首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The cationic ring‐opening multibranching polymerization of 2‐hydroxymethyloxetane ( 1 ) as a novel latent AB2‐type monomer was carried out using trifluoromethane sulfonic acid or trifluoroboron diethyl etherate by a slow‐monomer‐addition (SMA) method. The polymer yield of poly‐1 ranged from ca. 58–88%, which increase with the increasing monomer addition time on the SMA method. The absolute molecular weights (Mw,MALLS) and the polydispersities of poly‐1 were in the range of 8,000–43,500 and 1.45–4.53, respectively, which also increased with the increasing monomer addition time. The Mark‐Houwink‐Sakurada exponents α in 0.2 M NaNO3 aq. were determined to be 0.02–0.25 for poly‐1 , indicating that poly‐1 has compact forms in the solution because of the highly branched structure. The degree of the branching value of poly‐1 , which was calculated by Frey's equation, ranged from ca. 0.50 to 0.58, which increased with the increasing monomer addition time. The steady shear flow of poly‐1 in aqueous solution exhibited a Newtonian behavior with steady shear viscosities independent of the shear rate. The results of the MALLS, NMR, and viscosity measurements indicated that poly‐1 is composed of a highly branched structure, i.e., the hyperbranched poly (2‐hydroxymethyloxetane). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Hyperbranched poly(2‐ethyl‐2‐oxazoline) was synthesized by a combination of cationic ring‐opening polymerization and the oxidation of thiol to disulfide groups. A three‐arm star poly(2‐ethyl‐2‐oxazoline) (PEtOx) was first synthesized using 1,3,5‐tris(bromomethyl) benzene as an initiator. The star PEtOx was end‐capped with potassium ethyl xanthate. Similarly, a linear PEtOx was synthesized and end‐capped with potassium ethyl xanthate using benzyl bromide as an initiator. Hyperbranched PEtOx was then obtained by in situ cleaving and subsequent oxidation of the star PEtOx and linear PEtOx mixture with n‐butylamine as both a cleaving agent and a base in tetrahydrofuran. The linear PEtOx was used to prevent the formation of gel. The hyperbranched PEtOx can be cleaved with dithiothreitol to trithiol and monothiol polymer. The hyperbranched PEtOx shows no remaining thiols using Ellman's assay. The resulting hyperbranched PEtOx was hydrolyzed to a novel hyperbranched polyethyleneimine with degradable disulfide linkages. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2030–2037  相似文献   

3.
N‐(4‐Tetrahydropyranyl‐oxy‐phenyl)maleimide (THPMI) was prepared and polymerized by radical or anionic initiators. THPMI could be polymerized by 2,2′‐azobis(isobutyronitrile) (AIBN) and potassium tert‐butoxide. Radical polymers (poly(THPMI)r) were obtained in 15–50% yields for AIBN in THF at 65°C after 2–5 h. The yield of anionic polymers (poly(THPMI)a) obtained from potassium tert‐butoxide in THF at 0°C after 20 h was 91%. The molecular weights of poly(THPMI)r and poly(THPMI)a were Mn = 2750–3300 (Mw/Mn = 1.2–3.3) and Mn = 11300 (Mw/Mn = 6.0), respectively. The difference in molecular weights of the polymers was due to the differences in the termination mechanism of polymerization and the solubility of these polymers in THF. The thermal decomposition temperatures were 205 and 365°C. The first decomposition step was based on elimination of the tetrahydropyranyl group from the poly(THPMI). Positive image patterns were obtained by chemical amplification of positive photoresist composed of poly(THPMI) and 4‐morpholinophenyl diazonium trifluoromethanesulfonate used as an acid generator. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 341–347, 1999  相似文献   

4.
Stimuli‐responsive hyperbranched polymers have attracted great attention in recent years because of their wide applications in biomedicine. Through proton‐transfer polymerization of triethanolamine and 1,2,7,8‐diepoxyoctane with the help of potassium hydride, a series of novel backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s were prepared successfully in one‐pot. The degrees of branching of the resulting polymers were at 0.40–0.49. Turbidity measurements revealed that hyperbranched poly(amine‐ether)s exhibited thermo and pH dual‐responsive properties in water. Importantly, these responsivities could be readily adjusted by changing the polymer composition as well as the polymer concentration in aqueous solution. Moreover, in vitro evaluation demonstrated that hyperbranched poly(amine‐ether)s showed low cytotoxicity and efficient cell internalization against NIH 3T3 cell lines. These results suggest that these backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s are promising materials for biomedicine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

6.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

7.
A novel miktofunctional initiator ( 1 ), 2‐hydroxyethyl 3‐[(2‐bromopropanoyl)oxy]‐2‐{[(2‐bromopropanoyl)oxy]methyl}‐2‐methyl‐propanoate, possessing one initiating site for ring‐opening polymerization (ROP) and two initiating sites for atom transfer radical polymerization (ATRP), was synthesized in a three‐step reaction sequence. This initiator was first used in the ROP of ?‐caprolactone, and this led to a corresponding polymer with secondary bromide end groups. The obtained poly(?‐caprolactone) (PCL) was then used as a macroinitiator for the ATRP of tert‐butyl acrylate or methyl methacrylate, and this resulted in AB2‐type PCL–[poly(tert‐butyl acrylate)]2 or PCL–[poly(methyl methacrylate)]2 miktoarm star polymers with controlled molecular weights and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.23) via the ROP–ATRP sequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2313–2320, 2004  相似文献   

8.
High glass transition temperature poly(N‐cyclohexyl‐5‐norbornene‐2,3‐dicarboximide)s (NDI)s prepared by ring opening metathesis polymerization yielded polymers with a narrow polydispersity and well‐controlled molecular weight materials when using the Grubbs first generation initiator. Polymers produced using the Grubbs second generation initiator could not be controlled easily. By initiator selection it was also possible to synthesize polymers with either 98 or 52% trans microstructures. These materials were employed as electro‐optic (EO) polymer hosts for high molecular hyperpolarizability (β) phenyl vinylene thiophene vinylene bridge chromophores. This chromophore was modified by the incorporation of a tert‐butyldiphenylsilane group. The addition was able to further increase its EO coefficient (r33) to reach 93 pm/V in a trans rich poly(NDI) produced by the Grubbs first generation initiator, compared to a benchmark chromophore / polymer combination. We investigated in detail the relationship between polymer microstructure and their absolute molecular weight on forming the best host–guest with the high β chromophore. Our results indicate that by utilizing a very simple host–guest system a high r33 can be realized. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
Hyperbranched poly(ether nitrile)s were prepared from a novel AB2 type monomer, 2‐chloro‐4‐(3,5‐dihydroxyphenoxy)benzonitrile, via nucleophilic aromatic substitution. Soluble and low‐viscous hyperbranched polymers with molecular weights upto 233,600 (Mw) were isolated. According to the 1H NMR and GPC data, the unique polymerization behavior was observed, which implies that the weight average molecular weight increased after the number average molecular weight reached plateau region. Model compounds were prepared to characterize the branching structure. Spectroscopic measurements of the model compounds and the resulting polymers, such as 1H, DEPT 13C NMR, and MS, strongly suggest that the ether exchange reaction and cyclization are involved in the propagation reaction. The side reactions would affect the unique polymerization behavior. The resulting polymers showed a good solubility in organic solvents similar to other hyperbranched aromatic polymers. The hydroxy‐terminated polymer was even soluble in basic water. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5835–5844, 2009  相似文献   

10.
Tri‐block copolymers of linear poly(ethylene glycol) (PEG) and hyperbranched poly‐3‐ethyl‐3‐(hydroxymethyl)oxetane (poly‐TMPO) are reported. The novel dumb‐bell shaped polyethers were synthesized in bulk with cationic ringopening polymerization utilizing BF3OEt2 as initiator, via drop‐wise addition of the oxetane monomer. The thermal properties of the materials were successfully tuned by varying the amount of poly‐TMPO attached to the PEG‐chains, ranging from a melting point of 54 °C and a degree of crystallinity of 76% for pure PEG, to a melting point of 35 °C and a degree of crystallinity of 12% for the polyether copolymer having an average of 14 TMPO units per PEG chain. The materials are of relatively low polydispersity, with Mn/Mw ranging from 1.2 to 1.4. The materials have been evaluated for usage with the energetic oxidizer ammonium dinitramide. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6191–6200, 2009  相似文献   

11.
An ABC‐type miktoarm star polymer was prepared with a core‐out method via a combination of ring‐opening polymerization (ROP), stable free‐radical polymerization (SFRP), and atom transfer radical polymerization (ATRP). First, ROP of ϵ‐caprolactone was carried out with a miktofunctional initiator, 2‐(2‐bromo‐2‐methyl‐propionyloxymethyl)‐3‐hydroxy‐2‐methyl‐propionic acid 2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yl oxy)‐ethyl ester, at 110 °C. Second, previously obtained poly(ϵ‐caprolactone) (PCL) was used as a macroinitiator for SFRP of styrene at 125 °C. As a third step, this PCL–polystyrene (PSt) precursor with a bromine functionality in the core was used as a macroinitiator for ATRP of tert‐butyl acrylate in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 100 °C. This produced an ABC‐type miktoarm star polymer [PCL–PSt–poly(tert‐butyl acrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.37). The obtained polymers were characterized with gel permeation chromatography and 1H NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4228–4236, 2004  相似文献   

12.
3‐Ethyl‐3‐hydroxymethyloxetane (EOX) polymerizes readily to branched multihydroxyl polyethers. Molecular weights of the polymers are, however, limited, and macromolecules are predominantly cyclic. This indicates that intramolecular chain transfer to polymer (back‐biting) proceeds in the system. Repeating units in poly‐EOX contain two nucleophilic sites that may participate in back‐biting, namely ether groups and hydroxyl groups. Analysis of matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectra of poly‐EOX prepared in the presence of analogous polyether that does not contain HO? groups (poly(3,3‐dimethyloxetane)‐poly‐DMOX) shows that the ether group in the repeating unit of poly‐DMOX does not participate in chain transfer to the polymer. However, when DMOX was polymerized in the presence of poly‐EOX, clear evidence of participation of HO? groups in intramolecular chain transfer was obtained. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 245–252, 2004  相似文献   

13.
Homopolymers of 2‐(trimethylsiloxy)ethyl methacrylate of degrees of polymerization from 5 to 50 were synthesized by group transfer polymerization in tetrahydrofuran (THF) using 1‐methoxy‐1‐(trimethylsiloxy)‐2‐methyl propene as the initiator and tetrabutylammonium bibenzoate as the catalyst. These polymers were first converted to poly[2‐(hydroxy)ethyl methacrylate]s by removal of the trimethylsilyl‐protecting groups by acidic hydrolysis, and subsequently transformed to poly{2‐[(3,5‐dinitrobenzoyl)oxy]ethyl methacrylate}s by reaction with 3,5‐dinitrobenzoyl chloride in the presence of triethylamine. Gel permeation chromatography in THF and proton nuclear magnetic resonance (1H NMR) spectroscopy in CDCl3 and d6 dimethyl sulfoxide were used to characterize the polymers in terms of their molecular weight and composition. The molecular weights were found to be close to the values expected from the polymerization stoichiometry and the molecular weight distributions were narrow, with polydispersity indices around 1.1. The hydrolysis and reesterification steps were found to be almost quantitative for all polymers. Differential scanning calorimetry and thermal gravimetric analysis were also employed to measure the glass transition temperatures (Tg 's) and decomposition temperatures, which were determined to be approximately 80 and 320 °C, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1457–1465, 2000  相似文献   

14.
The anionic polymerization of derivatives of 4‐phenyl‐1‐buten‐3‐yne was carried out to investigate the effect of substituents on the polymerization behavior. The polymerization of 4‐(4‐fluorophenyl)‐1‐buten‐3‐yne and 4‐(2‐fluorophenyl)‐1‐buten‐3‐yne in tetrahydrofuran at −78 °C with n‐BuLi/sparteine as an initiator gave polymers consisting of 1,2‐ and 1,4‐polymerized units in quantitative yields with ratios of 80/20 and 88/12, respectively. The molecular weights of the polymers were controlled by the ratio of the monomers to n‐BuLi, and the distribution was relatively narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), supporting the living nature of the polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1016–1023, 2001  相似文献   

15.
The synthesis of heterotelechelic poly(methyl methacrylate) (PMMA) containing α‐maleimide‐ω‐dienyl end‐groups and its subsequent intramolecular cyclization are described. The anionic polymerization of methyl methacrylate was carried out with 3‐tert‐butyldimethylsilyloxypropyl‐1‐lithium and 5‐bromo‐1,3‐pentadiene as the initiator and terminator, respectively, to synthesize α‐hydroxy‐ω‐dienyl‐PMMA. The introduction of the maleimide group to the α chain end by the reaction of the sodium salt of the polymer with N‐(3‐chloromethylphenyl)‐maleimide or N‐(3‐bromomethylphenyl)‐maleimide was not successful because of the nucleophilic addition of alkoxide to the carbon carbon double bond of the maleimide group. When 4,4′‐bismaleimidediphenylether was allowed to react with the alkoxide, the aimed α‐maleimide‐ω‐dienyl‐PMMA was obtained in a good yield. Ring closure by the intramolecular Diels–Alder reaction was carried out by the heating of the dilute polymer solution in tetrahydrofuran. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 237–246, 2000  相似文献   

16.
The synthesis and self‐polyaddition of the optically active monomers I‐T(L )‐M and I‐T(D )‐M bearing both isocyanate and hydroxyl groups were examined. I‐T(L )‐M and I‐T(D )‐M were synthesized by reactions of L ‐ and D ‐tyrosine methyl ester, T(L )‐M and T(D )‐M, with di‐tert‐butyltricarbonate, respectively. The self‐polyaddition of I‐T(L )‐M and I‐T(D )‐M proceeded smoothly with triethylamine or tert‐butyllithium as the initiator in tetrahydrofuran, affording the optically active linear polyurethanes poly[I‐T(L )‐M] and poly[I‐T(D )‐M] with specific head‐to‐tail structures, where the number‐average molecular weights ranged from 10,000 to 20,000 in excellent yields. The optical properties suggested the idea that poly[I‐T(L )‐M] and poly[I‐T(D )‐M] should have some higher order structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1143–1153, 2004  相似文献   

17.
α‐Hydroxy and α,ω‐dihydroxy polymers of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) of various molecular weights were synthesized by group transfer polymerization (GTP) in tetrahydrofuran (THF), using 1‐methoxy‐1‐(trimethylsiloxy)‐2‐methyl propene (MTS) as the initiator and tetrabutylammonium bibenzoate (TBABB) as the catalyst. The hydroxyl groups were introduced by adding one 2‐(trimethylsiloxy) ethyl methacrylate (TMSEMA) unit at one or at both ends of the polymer chain. The ends were converted to 2‐hydroxyethyl methacrylate (HEMA) units after the polymerization by acid‐catalyzed hydrolysis. Gel permeation chromatography (GPC) in THF and proton nuclear magnetic resonance (1H‐NMR) spectroscopy in CDCl3 were used to determine the molecular weight and composition of the polymers. These mono‐ and difunctional methacrylate polymers can be covalently linked at the hydroxy termini to form star polymers and model networks, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1597–1607, 1999  相似文献   

18.
A series of biocompatible and degradable hyperbranched polyether esters, poly(2‐hydroxyethyl 2‐methyloxirane‐2‐carboxylate) (pHEMOC) with controlled molecular weight (MW) and polydispersity (PD), have been synthesized via oxyanionic ring‐opening polymerization of HEMOC that was prepared by the epoxidation of 2‐hydroxyethyl methacrylate. pHEMOCs of their MWs ranging from about 500 to 20,000 with their PD values less than 1.5 are obtained simply by controlling 1,1,1‐tris‐hydroxymethylpropane initiator to HEMOC ratio. The pHEMOCs comprised of ether and ester backbones and multiple hydroxyl groups on the core and periphery results in materials that exhibit good degradability and low cytotoxicity, enabling them to be an ideal candidate material for biomedical applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1643–1651  相似文献   

19.
The synthesis of 21‐arm methyl methacrylate (MMA) and styrene star polymers is reported. The copper (I)‐mediated living radical polymerization of MMA was carried out with a cyclodextrin‐core‐based initiator with 21 independent discrete initiation sites: heptakis[2,3,6‐tri‐O‐(2‐bromo‐2‐methylpropionyl]‐β‐cyclodextrin. Living polymerization occurred, providing well‐defined 21‐arm star polymers with predicted molecular weights calculated from the initiator concentration and the consumed monomer as well as low polydispersities [e.g., poly(methyl methacrylate) (PMMA), number‐average molecular weight (Mn) = 55,700, polydispersity index (PDI) = 1.07; Mn = 118,000, PDI = 1.06; polystyrene, Mn = 37,100, PDI = 1.15]. Functional methacrylate monomers containing poly(ethylene glycol), a glucose residue, and a tert‐amine group in the side chain were also polymerized in a similar fashion, leading to hydrophilic star polymers, again with good control over the molecular weight and polydispersity (Mn = 15,000, PDI = 1.03; Mn = 36,500, PDI = 1.14; and Mn = 139,000, PDI = 1.09, respectively). When styrene was used as the monomer, it was difficult to obtain well‐defined polystyrene stars at high molecular weights. This was due to the increased occurrence of side reactions such as star–star coupling and thermal (spontaneous) polymerization; however, low‐polydispersity polymers were achieved at relatively low conversions. Furthermore, a star block copolymer consisting of PMMA and poly(butyl methacrylate) was successfully synthesized with a star PMMA as a macroinitiator (Mn = 104,000, PDI = 1.05). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2206–2214, 2001  相似文献   

20.
Well‐defined trifluoromethylated poly(phenylene oxide)s were synthesized via nucleophilic aromatic substitution (SNAr) reaction by a chain‐growth polymerization manner. Polymerization of potassium 4‐fluoro‐3‐(trifluoromethyl)phenolate in the presence of an appropriate initiator yielded polymers with molecular weights of ~4000 and polydispersity indices of <1.2, which were characterized by 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography. Initiating sites for atom transfer radical polymerization (ATRP) were introduced at the either side of chain ends of the poly(phenylene oxide), and used for ATRP of styrene and methyl methacrylate, yielding well‐defined rod‐coil block copolymers. Differential scanning calorimetry study indicated that the well‐defined trifluoromethylated poly(phenylene oxide)s showed high crystallinity and were immiscible with polystyrene. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1049–1057, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号