首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
In order to increase the isotactic content of β‐nucleated polypropylene (β‐iPP) and decrease the cost of its production, the investigation and development of novel highly efficient β‐nucleators are important issues. Nano‐CaCO3 was used as a support to prepare a supported β‐nucleator, nano‐CaCO3‐supported calcium pimelate. Fourier transform infrared spectral analysis shows that an in situ chemical reaction takes place between nano‐CaCO3 and pimelic acid. Differential scanning calorimetry results indicate that the crystallization and melting temperatures of β‐phase in supported β‐nucleator‐nucleated iPP are higher than those of calcium pimelate‐nucleated iPP. The β‐nucleating ability of the supported β‐nucleator is little influenced by the cooling rate and crystallization temperature over a wide range. The decreased content of pimelic acid in the supported β‐nucleator slightly decreases the crystallization temperature of iPP but it has no influence on the content of β‐phase in nucleated iPP. A novel supported β‐nucleator has been successfully synthesized via pimelic acid supported on the surface of CaCO3. The crystallization temperature of iPP and melting temperature of β‐phase in iPP nucleated using the supported β‐nucleator are higher than those of iPP nucleated using calcium pimelate. The concept of a supported nucleator will provide a new way to increase the efficiency of polymer additives and to decrease the amounts of them that need to be used by using nanoparticles as supports. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
A novel highly active β‐nucleating agent, β‐cyclodextrin complex with lanthanum (β‐CD‐MAH‐La), was introduced to isotactic polypropylene (iPP). Its influence on isothermal crystallization and melting behavior of iPP was investigated by differential scanning calorimeter (DSC), wide‐angle X‐ray diffraction (WAXD), and polarized light microscopy (PLM). WAXD results demonstrated that β‐CD‐MAH‐La was an effective β‐nucleating agent, with β‐crystal content of iPP being strongly influenced by the content of β‐CD‐MAH‐La and the isothermal crystallization temperature. The isothermal crystallization kinetics of pure iPP and iPP/β‐CD‐MAH‐La was described appropriately by Avrami equation, and results revealed that β‐CD‐MAH‐La promoted heterogeneous nucleation and accelerated the crystallization of iPP. In addition, the equilibrium melting temperature (T) of samples was determined using linear and nonlinear Hoffman‐Weeks procedure. Finally, the Lauritzen‐Hoffman secondary nucleation theory was applied to calculate the nucleation parameter (Kg) and the fold surface energy (σe), the value of which verify that the addition of β‐CD‐MAH‐La reduced the creation of new surface for β‐crystal and then led to faster crystallization rate. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
In this study, the melt structure of isotactic polypropylene (iPP) nucleated with α/β compounded nucleating agents (α/β‐CNA, composed of the α‐NA of 0.15 wt % Millad 3988 and the β‐NA of 0.05 wt % WBG‐II) was tuned by changing the fusion temperature Tf. In this way, the role of melt structure on the crystallization behavior and polymorphic composition of iPP were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXD) and scanning electron microscopy (SEM). The results showed that when Tf = 200°C (iPP was fully molten), the α/β‐CNA cannot encourage β‐phase crystallization since the nucleation efficiency (NE) of the α‐NA 3988 was obviously higher than that of the β‐NA WBG‐II. Surprisingly, when Tf was in 179–167°C, an amount of ordered structures survived in the melt, resulting in significant increase of the proportion of β‐phase (achieving 74.9% at maximum), indicating that the ordered structures of iPP played determining role in β‐phase crystallization of iPP nucleated with the α/β‐CNA. Further investigation on iPP respectively nucleated with individual 3988 and WBG‐II showed that as Tf decreased from 200°C to 167°C, the crystallization peak temperature Tc of iPP/3988 stayed almost constant, while Tc of iPP/WBG‐II increased gradually when Tf < 189°C and became higher than that of iPP/3988 when Tf decreased to 179°C and lower, which can be used to explain the influence of ordered structure and α/β‐CNA on iPP crystallization. Using this method, the selection of α‐NA for α/β‐CNA can be greatly expanded even if the inherent NE of β‐NA is lower than that of the α‐NA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41355.  相似文献   

4.
To obtain isotactic polypropylene (iPP) nanocomposites with high β‐crystal content, TMB5, calcium pimelate and calcium pimelate supported on the surface of nano‐CaCO3 were used as β‐nucleating agent and MWCNT filled β‐nucleated iPP nanocomposites were prepared. The effect of different β‐nucleating agent and MWCNT on the crystallization behavior and morphology, melting characteristic and β‐crystal content of β‐nucleated iPP nanocomposites were investigated by DSC, XRD and POM. The results indicated that addition of MWCNT increased the crystallization temperature of iPP and MWCNT filled iPP nanocomposites mainly formed α‐crystal. The β‐nucleating agent can induce the formation of β‐crystal in MWCNT filled iPP nanocomposites. The β‐nucleating ability and β‐crystal content in MWCNT filled β‐nucleated iPP nanocomposites decreased with increasing MWCNT content and increased with increasing β‐nucleating agent content due to the nucleation competition between MWCNT and β‐nucleating agents. It is found that the calcium pimelate supported on the surface of inorganic particles as β‐nucleating agent has stronger heterogeneous β‐nucleation than calcium pimelate and TMB5. The MWCNT filled iPP nanocomposites with high β‐crystal content can be obtained by supported β‐nucleating agent. POLYM. COMPOS., 36:635–643, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
Zinc adipate (Adi‐Zn) was observed to be a highly active and selective β‐nucleating agent for isotactic polypropylene (iPP). The effects of Adi‐Zn on the mechanical properties and the β‐crystals content of nucleated iPP were investigated. The impact strength of iPP nucleated with 0.2 wt % Adi‐Zn was 1.8 times higher than that of neat iPP. In addition, wide‐angle X‐ray diffraction analysis indicated that the content of β‐crystals in nucleated iPP (kβ value) reached 0.973 with 0.1 wt % Adi‐Zn, indicating that Adi‐Zn is a highly active and selective β‐nucleating agent for iPP. Furthermore, fast scanning chip calorimetry (FSC) studies using cooling rates from 60 to 13,800 °C min?1 revealed that the formation of β‐crystals significantly depended on the cooling rates. At cooling rates below 3000 °C min?1, only β‐crystals existed. However, at cooling rates above 6000 °C min?1, β‐crystals failed to form. Moreover, a lower critical crystallization temperature that corresponded to the generation of β‐crystals was investigated using cooling‐induced crystallization, and the results are in good agreement with those of a previous study. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43767.  相似文献   

6.
A supercooled melt of isotactic polypropylene (iPP) was extruded through a capillary die. Polarized light microscopy (PLM), wide‐angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC) were used to investigate the effects of the relatively weak wall shear stress (σw), extrusion temperature (Te), and crystallization temperature (Tc) on the structure and morphology of β‐form isotactic polypropylene (β‐iPP). β‐cylindrites crystals could be observed by PLM in the extruded specimen even at a lower σw's (0.020 MPa), and the β‐iPP content increased with decreasing Te. Under a given Te of 150°C, the increase in σw positively influenced the β‐iPP content. The DSC and WAXD results indicate that the total crystallinity and β‐iPP content increased when Tc was set from 105 to 125°C; the other experimental parameters were kept on the same level. Although Tc was above 125°C, the β‐iPP content obviously decreased, and the total crystallinity continued to increase. On the basis of the influences of σw, Te, and Tc on the β‐iPP crystal morphology and structure, a modified model is proposed to explain the growing of shear‐induced β‐iPP nucleation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The nucleating ability of p‐cyclohexylamide carboxybenzene (β‐NA) towards isotactic polypropylene (iPP) was investigated by differential scanning calorimetry, X‐ray diffraction, polarized optical microscopy and scanning electron microscopy. β‐NA is identified to have dual nucleating ability for α‐iPP and β‐iPP under appropriate kinetic conditions. The formation of β‐iPP is dependent on the content of β‐NA. The content of β‐phase can reach as high as 96.96% with the addition of only 0.05 wt% β‐NA. Under non‐isothermal crystallization the content of β‐iPP increases with increasing cooling rate. The maximum β‐crystal content is obtained at a cooling rate of 40 °C min–1. The supermolecular structure of the β‐iPP is identified as a leaf‐like transcrystalline structure with an ordered lamellae arrangement perpendicular to the special surface of β‐NA. Under isothermal crystallization β‐crystals can be formed in the temperature range 80–140 °C. The content of β‐crystals reaches its maximum value at a crystallization temperature of 130 °C. © 2012 Society of Chemical Industry  相似文献   

8.
In this study, the effects of melt structure (tuned by controlling the fusion temperature Tf) on non‐isothermal crystallization and subsequent melting behaviors of isotactic polypropylene (iPP) nucleated with α/β compounded nucleating agents (α/β‐CNAs) have been further investigated. The results show that under all cooling rates studied (2–40°C/min), the crystallization temperature on cooling curves increased gradually with decrease of Tf, meanwhile, when Tf was in temperature range of 166°C–179°C where ordered structures survived in the melt (defined as Region II), crystallization activation energy ΔE was found to be evidently lower compared with that when Tf > 179°C or Tf < 166°C. The results of subsequent heating showed that occurrence of Ordered Structure Effect can be observed at all the cooling rates studied; the location of the Region II was constant when cooling rate varied; Low cooling rate encouraged formation of more β‐phase triggered by ordered structure. Moreover, the role of ordered structure on β‐α recrystallization was comparatively studied by tuning the end temperature of recooling (Tend) after held at Tf, and it was found that ordered structure encouraged the formation of β‐phase with high thermal stability at low temperature part of Region II, while enhanced the β‐crystal with relatively low thermal stability at high temperature part of Region II. POLYM. ENG. SCI., 57:989–997, 2017. © 2016 Society of Plastics Engineers  相似文献   

9.
A highly novel nano‐CaCO3 supported β‐nucleating agent was employed to prepare β‐nucleated isotactic polypropylene (iPP) blend with polyamide (PA) 66, β‐nucleated iPP/PA66 blend, as well as its compatibilized version with maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted polyethylene‐octene (POE‐g‐MA), and polyethylene‐vinyl acetate (EVA‐g‐MA), respectively. Nonisothermal crystallization behavior and melting characteristics of β‐nucleated iPP and its blends were investigated by differential scanning calorimeter and wide angle X‐ray diffraction. Experimental results indicated that the crystallization temperature (T) of PP shifts to high temperature in the non‐nucleated PP/PA66 blends because of the α‐nucleating effect of PA66. T of PP and the β‐crystal content (Kβ) in β‐nucleated iPP/PA66 blends not only depended on the PA66 content, but also on the compatibilizer type. Addition of PP‐g‐MA and POE‐g‐MA into β‐nucleated iPP/PA66 blends increased the β‐crystal content; however, EVA‐g‐MA is not benefit for the formation of β‐crystal in the compatibilized β‐nucleated iPP/PA66 blend. It can be relative to the different interfacial interactions between PP and compatibilizers. The nonisothermal crystallization kinetics of PP in the blends was evaluated by Mo's method. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
On the premise that shear in the slit die of an extruder was minimized as far as possible, β‐nucleated isotactic polypropylene (iPP) was extruded. Simultaneously, once the extrudate (in the melt state) left the die exit, it was stretched at various stretching rates (SRs). For iPP with a low content of β‐nucleating agent (β‐NA), the crystallinity of β‐phase (Xβ) initially increases with increasing SR, and then decreases slightly with further increase in SR. However, for iPP containing a higher content of β‐NA, with increasing SR, Xβ decreases monotonically, indicating a negative effect of SR on β‐phase formation. Small‐angle X‐ray scattering and polarized optical microscopy experiments reveal that, when SR is less than 30 cm min?1, the increasing amount of row nuclei induced by increasing SR is mainly responsible for the increase of Xβ. In contrast, when SR exceeds 30 cm min?1, the overgrowth of shish structures unexpectedly restrains the development of β‐phase, and spatial confinement is considered as a better explanation for the suppression of β‐phase. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
A novel highly efficient β‐nucleating agent for isotactic polypropylene (iPP), hexahydrophthalic barium (HHPA‐Ba), was found and its effects on the mechanical properties, the β‐phase content, and crystallization behavior of iPP were investigated, respectively. The results show that the β‐phase content of nucleated iPP (kβ value) can reach 80.2% with 0.4 wt % HHPA‐Ba. The impact strength and crystallization peak temperature of nucleated iPP are greatly increased. Compared with pure iPP, the impact strength of nucleated iPP can increase 2.4 times. Meanwhile, the spherulite size of nucleated iPP is dramatically decreased than that of pure iPP. The Caze method was used to investigate the nonisothermal crystallization kinetics of nucleated iPP and the crystallization active energy was achieved by Kissinger method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
The influence of a mixed additive of lanthanum stearate and stearic acid on the crystalline characteristics of isotactic polypropylene (iPP) has been investigated. The results of the wide‐angle X‐ray diffraction (WAXD) measurements and the melting behaviour examination by differential scanning calorimetry (DSC) show that the additive might induce a high proportion of β‐form and act as a β‐form nucleating agent. The relative content of β‐form estimated by WAXD is 33.1% in a PP containing 2.5% (by weight) of the additive. Isothermal crystallization at 130 °C, examined by DSC, reveals that the additive considerably accelerates the overall rate of crystallization: the half crystallization period t1/2, decreases from 11.7 min for pure PP to 7.3 min for PP containing 2.5% of the additive. However, the additive has no obvious influence on the nucleation mechanism and crystal growth mode. Polarized light microscopy (POM) examinations indicate that the addition of the additive to PP causes spherulites to become much finer. © 2003 Society of Chemical Industry  相似文献   

13.
The non‐isothermal crystallization behavior, the crystallization kinetics, the crystallization activation energy and the morphology of isotactic polypropylene (iPP) with varying content of β‐nucleating agent were investigated using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The DSC results showed that the Avrami equation modified by Jeziorny and a method developed by Mo and co‐workers could be successfully used to describe the non‐isothermal crystallization process of the nucleated iPPs. The values of n showed that the non‐isothermal crystallization of α‐ and β‐nucleated iPPs corresponded to a tridimensional growth with homogeneous and heterogeneous nucleation, respectively. The values of crystallization rate constant showed that the rate of crystallization decreased for iPPs with the addition of β‐nucleating agent. The crystallization activation energy increased with a small amount (less than 0.1 wt%) of β‐nucleating agent and decreased with higher concentration (more than 0.1 wt%). The changes of crystallization rate, crystallization time and crystallization activation energy of iPPs with varying contents of β‐nucleating agent were mainly determined by the ratio of the content of α‐ and β‐phase in iPP (α‐PP and β‐PP) from the DSC investigation, and the large size and many intercrossing lamellae between boundaries of β‐spherulites for iPPs with small amounts of β‐nucleating agent and the small size and few intercrossing bands among the boundaries of β‐spherulites for iPPs with large amounts of β‐nucleating agent from the SEM examination. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
Wollastonite‐filled α‐isotactic polypropylene (iPP) and β‐iPP were prepared through introduction of wollastonite (W) and wollastonite with β‐nucleating surface (Wx) in iPP matrix. The α‐ and β‐nucleating ability of wollastonite, crystalline morphology, and mechanical properties of injected iPP filled by wollastonite with different nucleating surface were compared using differential scanning calorimetry, wide‐angle X‐ray diffraction, polarizing optical microscopy, mechanical testing, and scanning electron microscopy. The results indicated that iPP filled by wollastonite with different nucleating surface has different crystalline morphology, melting behavior, and mechanical properties. The W and Wx filled iPP mainly formed α‐ and β‐phase iPP, respectively. The tensile and flexural modulus of iPP/W and iPP/Wx increased with increasing wollastonite content, and the tensile and flexural modulus of iPP/Wx were lower than that of iPP/W. The tensile property, flexural property, and impact strength of iPP/Wx were higher than that of iPP/W and β‐iPP. The synergistic effect of reinforcing of wollastonite and toughening of β‐phase leads to higher mechanical properties. POLYM. COMPOS., 35:1445–1452, 2014. © 2013 Society of Plastics Engineers  相似文献   

15.
The β‐nucleating activity and toughening effect of acrylonitrile–butadiene–styrene (ABS) graft copolymer on isotactic polypropylene (iPP) and the compatibilizing role of maleic anhydride grafted polypropylene (PP‐g‐MAH) on the iPP/ABS blends were investigated. The results show that ABS can induce the formation of β‐crystal in iPP, and its β‐nucleating efficiency depends on its concentration and dispersibility. The relative content of β‐crystal form is up to 36.19% with the addition of 2% ABS. The tensile and impact properties of the iPP were dramatically enhanced by introducing ABS. The incorporation of PP‐g‐MAH into the iPP/ABS blends inhibits the formation of β‐crystal. The crystallization peaks of the blends shift toward higher temperature, due to the heterogeneous nucleation effect of PP‐g‐MAH on iPP. The toughness of iPP/ABS blends improved due to favorable interfacial interaction resulting from the compatibilization of PP‐g‐MAH is significantly better than the β‐crystal toughening effect induced by ABS. POLYM. ENG. SCI., 59:E317–E326, 2019. © 2019 Society of Plastics Engineers  相似文献   

16.
This article deals with the crystallization behaviors of original (prepared in a torque rheometer), DSC crystallization and mold crystallization (quenching and slow nonisothermal crystallization) of isotactic polypropylene (iPP) mixed with β‐form nucleating agent. The microstructure and thermal stability of these samples were investigated. The wide angle X‐ray diffraction (WAXD) results indicate that fast cooling is favorable for β‐form iPP formation. With slower cooling rate and higher concentration of nucleating agent, the lamellar thickness and stability of crystal0s were enhanced. Polarized optical microscopy (POM) and scanning electron microscopy (SEM) both showed that rapid crystallized samples gave rise to tiny spherulites, whereas under slow crystallization condition, nucleated samples could be fully developed in the form of dendritic or transcrystalline structures, depending on the nucleating agent concentration. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The effect of phenyl‐terminated hyperbranched polyester (HBP‐Bz) with different generation (the first generation and the fourth generation) as a special β‐nucleating agent on the toughness of isotactic polypropylene (iPP) was investigated by dynamic rheological measurements, scanning electron microscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, polarized optical microscopy, and mechanical properties measurements. The results show that the β nucleating activity of HBP‐Bz significantly depends on its concentration and molecular structure. The relative content of β‐crystal form (Kβ) increases with the increasing HBP‐Bz percentage reaches a maximum and then decreases as HBP‐Bz percentage further increases. The Kβ values of iPP/HBP‐G1‐1% and iPP/HBP‐G4‐1% blends are 26.52% and 20.80%, respectively. When compared with HBP‐G4, HBP‐G1 has incompact molecular structure, facilitating the π–π interaction between phenyl‐terminated groups and the helix chains of iPP crystallize on it, and therefore relatively good dispersibility, high β nucleating activity and excellent toughening effect are obtained. The impact strength of iPP was dramatically improved, especially with addition of 1 wt% HBP‐G1. POLYM. ENG. SCI., 59:E133–E143, 2019. © 2018 Society of Plastics Engineers  相似文献   

18.
BACKGROUND: It is a challenge for polymer processing to promote the formation of γ‐phase under atmospheric conditions in isotactic polypropylene (iPP) copolymer containing chain errors. Incorporation of an α‐nucleator in iPP copolymer seems reasonable since it can enhance non‐isothermal crystallization. Up to now, however, the issue regarding a β‐nucleated iPP copolymer still remains unclear, which is the subject of this study. RESULTS: The results indicate that the γ‐phase indeed occurs in a β‐nucleated random iPP copolymer with ethylene co‐unit (PPR) sample and becomes predominant at slow cooling rates (e.g. 1 °C min?1) where the formation of the β‐form is suppressed to a large extent. With detailed morphological observations the formation of γ‐phase in the β‐nucleated PPR sample at slow cooling rate is unambiguously attributed to the nucleating duality of the β‐nucleator towards α‐ and β‐polymorphs. The α‐crystals, induced by the β‐nucleator, serve as seeds for the predominant growth of the γ‐phase. Moreover, the presence of the β‐nucleator, acting as heterogeneous nuclei, promotes the formation of γ‐phase in the nucleated PPR sample, at least to some extent. CONCLUSION: The findings in this study extend our insights into the formation of γ‐phase in β‐nucleated iPP copolymer and, most importantly, provide an alternative route to obtain iPP rich in γ‐phase. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
As part of continuous efforts to understand the surprising synergetic effect between β‐nucleating agent and pre‐ordered structures of isotactic polypropylene (iPP) in significant enhancement of β‐crystallization (Ordered Structure Effect, OSE), two β‐nucleated iPP with different uniformities of stereo‐defect distribution (WPP‐A and WPP‐B) were prepared, their crystallization behaviors with variation of melt structures were studied in detail. The results revealed that β‐phase can hardly form in WPP‐A (whose stereo‐defect distribution is less uniform) because of its strong tendency of α‐nucleation caused by its less uniform stereo‐defect distribution, while WPP‐B is more favorable for β‐crystallization; As fusion temperature decreases, similar variation trends of crystallization temperature and β‐phase proportion can be observed from WPP‐A and WPP‐B, indicating the occurrence of OSE behavior, which provides unsurpassed β‐nucleation efficiency and induces β‐crystallization even in WPP‐A which is less favorable for β‐crystallization; moreover, the upper and lower limiting temperatures of Region II of WPP‐A and WPP‐B are identical, suggesting the uniformity of stereo‐defect distribution has little influence on temperature window for OSE (denoted as Region II). To explore the physical nature of Region II, self‐nucleation behavior and equilibrium melting temperature of PP‐A and PP‐B were studied. The lower limiting temperatures of exclusive self‐nucleation domain of both PP‐A and PP‐B are identical with the lower limiting temperatures of Region II in OSE (168°C); moreover, the Tm0 of both PP‐A and PP‐B are close to their upper limiting temperatures of Region II in OSE behavior (189°C). The possible explanation was proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42632.  相似文献   

20.
Multiple melting characteristics of a highly isotactic polypropylene (iPP) were studied by means of differential scanning calorimetry (DSC). Double melting characteristics were observed on melting iPP crystallized isothermally at temperatures ranging from 110 to 140°C. iPP crystallized below and above 125°C exhibited different double melting characteristics from each other. For iPP crystallized below 125°C, the single melting peak split into two peaks during slow DSC heating scans without changing the total crystallinity in the polymer. On the other hand, the double melting endotherm of iPP crystallized above 125°C seemed to come from two preexisting crystal fractions having different Tm. There existed an optimum annealing temperature range where the five-minute annealing of iPP raised Tm of the polymer significantly. The treatment also increased the crystallinity of iPP crystallized isothermally at 110°C by 12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号