首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We consider the performance of sparse linear solvers for problems that arise from thermo‐mechanical applications. Such problems have been solved using sparse direct schemes that enable robust solution at the expense of memory requirements that grow non‐linearly with the dimension of the coefficient matrix. In this paper, we consider a class of preconditioned iterative solvers as a limited‐memory alternative to direct solution schemes. However, such preconditioned iterative solvers typically exhibit complex trade‐offs between reliability and performance. We therefore characterize such trade‐offs for systems from thermo‐mechanical problems by considering several preconditioning schemes including multilevel methods and those based on sparse approximate inversion and incomplete matrix factorization. We provide an analysis of computational costs and memory requirements for model thermo‐mechanical problems, indicating that certain incomplete factorization schemes can achieve good performance. We also provide empirical evaluations that corroborate our analysis and indicate the relative effectiveness of different solution schemes. Our results indicate that our drop‐threshold incomplete Cholesky preconditioning is more robust, efficient and flexible than other popular preconditioning schemes. In addition, we propose preconditioner reuse to amortize preconditioner construction cost over a sequence of linear systems that arise from non‐linear solutions in a plastic regime. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
An adaptively stabilized monolithic finite element model is proposed to simulate the fully coupled thermo‐hydro‐mechanical behavior of porous media undergoing large deformation. We first formulate a finite‐deformation thermo‐hydro‐mechanics field theory for non‐isothermal porous media. Projection‐based stabilization procedure is derived to eliminate spurious pore pressure and temperature modes due to the lack of the two‐fold inf‐sup condition of the equal‐order finite element. To avoid volumetric locking due to the incompressibility of solid skeleton, we introduce a modified assumed deformation gradient in the formulation for non‐isothermal porous solids. Finally, numerical examples are given to demonstrate the versatility and efficiency of this thermo‐hydro‐mechanical model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
We present the theory of novel time‐stepping algorithms for general nonlinear, non‐smooth, coupled, and thermomechanical problems. The proposed methods are thermodynamically consistent in the sense that their solutions rigorously comply with the two laws of thermodynamics: for isolated systems, they preserve the total energy and the entropy never decreases. Extending previous works on the subject, the newly proposed integrators are applicable to coupled mechanical systems with non‐smooth kinetics and can be formulated in arbitrary variables. The ideas are illustrated with a simple non‐smooth problem: a rheological model for a thermo‐elasto‐plastic material with hardening. Numerical simulations verify the qualitative features of the proposed methods and illustrate their excellent numerical stability, which stems precisely from their ability to preserve the structure of the evolution equations they discretize. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
5.
A mixed finite element for coupled thermo‐hydro‐mechanical (THM) analysis in unsaturated porous media is proposed. Displacements, strains, the net stresses for the solid phase; pressures, pressure gradients, Darcy velocities for pore water and pore air phases; temperature, temperature gradients, the total heat flux are interpolated as independent variables. The weak form of the governing equations of coupled THM problems in porous media within the element is given on the basis of the Hu–Washizu three‐filed variational principle. The proposed mixed finite element formulation is derived. The non‐linear version of the element formulation is further derived with particular consideration of the THM constitutive model for unsaturated porous media based on the CAP model. The return mapping algorithm for the integration of the rate constitutive equation, the consistent elasto‐plastic tangent modulus matrix and the element tangent stiffness matrix are developed. For geometrical non‐linearity, the co‐rotational formulation approach is utilized. Numerical results demonstrate the capability and the performance of the proposed element in modelling progressive failure characterized by strain localization and the softening behaviours caused by thermal and chemical effects. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A coupled finite element model is developed to analyse the thermo‐mechanical behaviour of a widely used polymer composite panel subject to high temperatures at service conditions. Thermo‐chemical and thermo‐mechanical models of previous researchers have been extended to study the thermo‐chemical decomposition, internal heat and mass transfer, deformation and the stress state of the material. The phenomena of heat and mass transfer and thermo‐mechanical deformation are simulated using three sets of governing equations, i.e. energy, gas mass diffusion and deformation equations. These equations are then assembled into a coupled matrix equation using the Bubnov–Galerkin finite element formulation and then solved simultaneously at each time interval. An experimentally tested 1.09 cm thick glass‐fibre woven‐roving/polyester resin composite panel is analysed using the numerical model. Results are presented in the form of temperature, pore pressure, deformation, strain and stress profiles and discussed. The maximum normal stress failure criterion is used in order to establish the load‐bearing capability of the composite panel. Significant pore gas pressure build‐ups (to 0.8 MPa and higher) have been perceived at high thermo‐chemical decomposition rates where the material experiences a complex expansion/contraction phenomenon. It is found that the composite panel experiences structural instability at elevated temperatures up to 300°C but retains its integrity even under moderate external loading. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the non‐isothermal elasto‐plastic behaviour of multiphase geomaterials in dynamics is investigated with a thermo‐hydro‐mechanical model of porous media. The supporting mathematical model is based on averaging procedures within the hybrid mixture theory. A computationally efficient reduced formulation of the macroscopic balance equations that neglects the relative acceleration of the fluids, and the convective terms is adopted. The modified effective stress state is limited by the Drucker–Prager yield surface. Small strains and dynamic loading conditions are assumed. The standard Galerkin procedure of the finite element method is applied to discretize the governing equations in space, while the generalized Newmark scheme is used for the time discretization. The final non‐linear set of equations is solved by the Newton method with a monolithic approach. Coupled dynamic analyses of strain localization in globally undrained samples of dense and medium dense sands are presented as examples. Vapour pressure below the saturation water pressure (cavitation) develops at localization in case of dense sands, as experimentally observed. A numerical study of the regularization properties of the finite element model is shown and discussed. A non‐isothermal case of incipient strain localization induced by temperature increase where evaporation takes place is also analysed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A finite element algorithm has been developed for the efficient analysis of smart composite structures with piezoelectric polymer sensors or/and actuators based on piezoelectro‐hygro‐thermo‐viscoelasticity. Variational principles for anisotropic coupled piezoelectro‐hygro‐thermo‐viscoelasto‐dynamic problems have also been proposed in this study. As illustrative studies, dynamic responses in laminated composite beams and plates with PVDF sensors and actuators are obtained as functions of time using the present finite element procedures. The voltage feedback control scheme is utilized. The proposed numerical method can be used for analysing problems in the design of smart structures as well as smart sensors and actuators. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
A new approach to process optimal design in non‐isothermal, steady‐state metal forming is presented. In this approach, the optimal design problem is formulated on the basis of the integrated thermo‐mechanical finite element process model so as to cover a wide class of the objective functions and to accept diverse process parameters as design variables, and a derivative‐based approach is adopted as a solution technique. The process model, the formulation for process optimal design, and the schemes for the evaluation of the design sensitivity, and an iterative procedure for design optimization are described in detail. The validity of the schemes for the evaluation of the design sensitivity is examined by performing a series of numerical tests. The capability of the proposed approach is demonstrated through applications to some selected process design problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract: This paper deals with the study of fracture behaviour of silicon carbide particle‐ reinforced aluminium alloy matrix composites (A359/SiCp) using an innovative non‐destructive method based on lock‐in thermography. The heat wave, generated by the thermo‐mechanical coupling and the intrinsic energy dissipated during mechanical cyclic loading of the sample, was detected by an infrared camera. The coefficient of thermo‐elasticity allows for the transformation of the temperature profiles into stresses. A new procedure was developed to determine the crack growth rate using thermographic mapping of the material undergoing fatigue. The thermographic results on the crack growth rate of A359/SiCp composite samples with three different heat treatments were correlated with measurements obtained by the conventional compliance method. The results obtained by the two methods were found to be in agreement, demonstrating that lock‐in thermography is a powerful tool for fracture mechanics studies. The paper also investigates the effect of heat treatment processing of metal matrix composites on their fracture properties.  相似文献   

11.
A spatial and temporal multiscale asymptotic homogenization method used to simulate thermo‐dynamic wave propagation in periodic multiphase materials is systematically studied. A general field governing equation of thermo‐dynamic wave propagation is expressed in a unified form with both inertia and velocity terms. Amplified spatial and reduced temporal scales are, respectively, introduced to account for spatial and temporal fluctuations and non‐local effects in the homogenized solution due to material heterogeneity and diverse time scales. The model is derived from the higher‐order homogenization theory with multiple spatial and temporal scales. It is also shown that the modified higher‐order terms bring in a non‐local dispersion effect of the microstructure of multiphase materials. One‐dimensional non‐Fourier heat conduction and dynamic problems under a thermal shock are computed to demonstrate the efficiency and validity of the developed procedure. The results indicate the disadvantages of classical spatial homogenization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
A new rigid‐viscoplastic model that includes the effect of thermal strains when modelling steady‐state metal‐forming processes was developed. A symmetric approximation to the resulting non‐symmetric stiffness matrix was derived. The thermo‐mechanical flow formulation was implemented using the pseudo‐concentrations technique. The new formulation was numerically tested showing that it provides reliable results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
This work addresses computational modeling challenges associated with structures subjected to sharp, local heating, where complex temperature gradients in the materials cause three‐dimensional, localized, intense stress and strain variation. Because of the nature of the applied loadings, multiphysics analysis is necessary to accurately predict thermal and mechanical responses. Moreover, bridging spatial scales between localized heating and global responses of the structure is nontrivial. A large global structural model may be necessary to represent detailed geometry alone, and to capture local effects, the traditional approach of pre‐designing a mesh requires careful manual effort. These issues often lead to cumbersome and expensive global models for this class of problems. To address them, the authors introduce a generalized FEM (GFEM) approach for analyzing three‐dimensional solid, coupled physics problems exhibiting localized heating and corresponding thermomechanical effects. The capabilities of traditional hp‐adaptive FEM or GFEM as well as the GFEM with global–local enrichment functions are extended to one‐way coupled thermo‐structural problems, providing meshing flexibility at local and global scales while remaining competitive with traditional approaches. The methods are demonstrated on several example problems with localized thermal and mechanical solution features, and accuracy and (parallel) computational efficiency relative to traditional direct modeling approaches are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The Smooth‐Particle‐Hydrodynamics (SPH) method is derived in a novel manner by means of a Galerkin approximation applied to the Lagrangian equations of continuum mechanics as in the finite‐element method. This derivation is modified to replace the SPH interpolant with the Moving‐Least‐Squares (MLS) interpolant of Lancaster and Saulkaskas, and define a new particle volume which ensures thermodynamic compatibility. A variable‐rank modification of the MLS interpolants which retains their desirable summation properties is introduced to remove the singularities that occur when divergent flow reduces the number of neighbours of a particle to less than the minimum required. A surprise benefit of the Galerkin SPH derivation is a theoretical justification of a common ad hoc technique for variable‐h SPH. The new MLSPH method is conservative if an anti‐symmetric quadrature rule for the stiffness matrix elements can be supplied. In this paper, a simple one‐point collocation rule is used to retain similarity with SPH, leading to a non‐conservative method. Several examples document how MLSPH renders dramatic improvements due to the linear consistency of its gradients on three canonical difficulties of the SPH method: spurious boundary effects, erroneous rates of strain and rotation and tension instability. Two of these examples are non‐linear Lagrangian patch tests with analytic solutions with which MLSPH agrees almost exactly. The examples also show that MLSPH is not absolutely stable if the problems are run to very long times. A linear stability analysis explains both why it is more stable than SPH and not yet absolutely stable and an argument is made that for realistic dynamic problems MLSPH is stable enough. The notion of coherent particles, for which the numerical stability is identical to the physical stability, is introduced. The new method is easily retrofitted into a generic SPH code and some observations on performance are made. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we consider a non‐linear viscoelastic model with internal variable, thoroughly analyzed by Le Tallecit et al. (Comput. Methods Appl. Mech. Engrg 1993; 109 :233–258). Our aim is to study here the implementation in three dimensions of a generalized version of this model. Computational results will be analyzed to validate our model on toy problems without geometric complexity, for which pseudo‐analytical solutions are known. At the end, we present a three‐dimensional numerical simulation on a mechanical device. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In nano‐structures, the influence of surface effects on the properties of material is highly important because the ratio of surface to volume at the nano‐scale level is much higher than that of the macro‐scale level. In this paper, a novel temperature‐dependent multi‐scale model is presented based on the modified boundary Cauchy‐Born (MBCB) technique to model the surface, edge, and corner effects in nano‐scale materials. The Lagrangian finite element formulation is incorporated into the heat transfer analysis to develop the thermo‐mechanical finite element model. The temperature‐related Cauchy‐Born hypothesis is implemented by using the Helmholtz free energy to evaluate the temperature effect in the atomistic level. The thermo‐mechanical multi‐scale model is applied to determine the temperature related characteristics at the nano‐scale level. The first and second derivatives of free energy density are computed using the first Piola‐Kirchhoff stress and tangential stiffness tensor at the macro‐scale level. The concept of MBCB is introduced to capture the surface, edge, and corner effects. The salient point of MBCB model is the definition of radial quadrature used at the surface, edge, and corner elements as an indicator of material behavior. The characteristics of quadrature are derived by interpolating the data from the atomic level laid in a circular support around the quadrature in a least‐square approach. Finally, numerical examples are modeled using the proposed computational algorithm, and the results are compared with the fully atomistic model to illustrate the performance of MBCB multi‐scale model in the thermo‐mechanical analysis of metallic nano‐scale devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
As an approach towards a better modelling of solidification problems, we introduce a thermo‐mechanical and macrosegregation model that considers a solidifying alloy as a binary mixture made of a liquid and a solid phase. Macroscopic conservation laws for mass, momentum and solute are obtained by spatial averaging of the respective microscopic conservation equations. Assuming local thermal equilibrium, a single equation for the conservation of the mixture energy is then written. A single equation can be obtained for the solute as well by invoking a proper microsegregation rule. The numerical implementation in a two‐dimensional finite element code is then detailed. Lastly, some examples of simulations of academic tests as well as industrial applications for continuous casting of steel slabs are discussed. They particularly enlighten the ability of the formulation to describe the formation of central macrosegregation during the secondary cooling of slab continuous casting processes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A computational framework is presented to evaluate the shape as well as non‐shape (parameter) sensitivity of finite thermo‐inelastic deformations using the continuum sensitivity method (CSM). Weak sensitivity equations are developed for the large thermo‐mechanical deformation of hyperelastic thermo‐viscoplastic materials that are consistent with the kinematic, constitutive, contact and thermal analyses used in the solution of the direct deformation problem. The sensitivities are defined in a rigorous sense and the sensitivity analysis is performed in an infinite‐dimensional continuum framework. The effects of perturbation in the preform, die surface, or other process parameters are carefully considered in the CSM development for the computation of the die temperature sensitivity fields. The direct deformation and sensitivity deformation problems are solved using the finite element method. The results of the continuum sensitivity analysis are validated extensively by a comparison with those obtained by finite difference approximations (i.e. using the solution of a deformation problem with perturbed design variables). The effectiveness of the method is demonstrated with a number of applications in the design optimization of metal forming processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
A computational scheme for the analysis and optimization of quasi‐static thermo‐mechanical processes is presented in this paper. In order to obtain desirable mechanical transformations in a workpiece using a thermal treatment process, the optimal control parameters need to be determined. The problem is addressed by posing the process as a decoupled thermo‐mechanical finite element problem and performing an optimization using gradient methods. The forward problem is solved using the Eulerian formulation since it is computationally more efficient compared to an equivalent Lagrangian formulation. The design sensitivities required for the optimization are developed analytically using direct differentiation. This systematic design approach is applied to optimize a laser forming process. The objective is to maximize the angular distortion of a specimen subject to the constraint that the phase transition temperature is not exceeded at any point in the model. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Solving fully coupled non‐linear hygro‐thermo‐mechanical problems relative to the behaviour of concrete at high temperatures using monolithic models is nowadays a very interesting and challenging computational problem. These models require an extensive use of computational resources, such as main memory and computational time, due to the great number of variables and the numerical characteristics of the coefficients of the linear systems involved. In this paper, a number of different variants of a frontal solver used within HITECOSP, an application developed within the BRITE Euram III ‘HITECO’ EU project, to solve multiphase porous media problems, are presented and evaluated with respect to their numerical accuracy and performance. When developing the variants, several optimization techniques have been adopted, such as data structure, cache and branches optimizations. Specifically, numerical accuracy has been evaluated using a modified componentwise backward error analysis. The main result of this work is a new solver which is both much faster and more accurate than the original one. Specifically, the code runs over five times faster and numerical errors are reduced by up to three orders of magnitude. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号