首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical analysis was carried out in order to investigate the combustion and heat transfer characteristics in a liquid rocket engine in terms of non-gray thermal radiation and soot formation. Governing gas and droplet phase equations with PSIC model, turbulent combustion model with liquid kerosene fuel, soot formation, and non-gray thermal radiative equations are introduced. A radiation model was implemented in a compressible flow solver in order to investigate the effects of thermal radiation. The finite-volume method (FVM) was employed to solve the radiative transfer equation, and the weighted-sum-of-gray-gases model (WSGGM) was applied to model the radiation effect by a mixture of non-gray gases and gray soot particulates. After confirming the two-phase combustion behavior with soot distribution, the effects of the O/F ratio, wall temperature, and wall emissivity on the wall heat flux were investigated. It was found that the effects of soot formation and radiation are significant; as the O/F ratio increases, the wall temperature decreases. In addition, as the wall emissivity increases, the radiative heat flux on the wall increases.  相似文献   

2.
Vahid Rajabi 《传热工程》2019,40(3-4):346-361
In this paper, local and global entropy generation features are studied numerically in two research flames and a real combustor problem. The research flames are the well-known Burner Engineering Research Laboratory and Sandia flame D experimental flame databases and the real combustor is a gas-turbine can-type combustor. The main focus is on investigating the effect of the swirl number, in the range 0.0–2.4, on entropy generation characteristics due to different phenomena, including viscous, mass transfer, heat transfer, heat-mass coupling, reaction, and specifically radiation. For this purpose, the surface and volumetric local entropy generation rates are formulated based on the first-order spherical harmonics model known as “P1,” a frequently used model in combustion applications. It is observed that heat transfer and reactions are dominant causes of entropy generation with the leading contribution of reaction at lower swirl numbers and heat transfer at higher swirl values. The radiation entropy generation is slightly affected by the swirl number and is of prime importance only in near stoichiometric conditions. Moreover, it is indicated how this local entropy generation analysis can be used to discover the weaknesses in the design of a real combustor.  相似文献   

3.
We investigate the radiative heat transfer in a co-flowing turbulent nonpremixed propane-air flame inside a three-dimensional cylindrical combustion chamber. The radiation from the luminous flame, which is due to the appearance of soot particles in the flame, is studied here, through the balance equation of radiative transfer which is solved by the Discrete Ordinates Method (DOM) coupling with a Large Eddy Simulation (LES) of the flow, temperature, combustion species and soot formation. The effect of scattering is ignored as it is found that the absorption dominates the radiating medium. Assessments of the various orders of DOM are also made and we find that the results of the incident radiation predicted by the higher order approximations of the DOM are in good agreement.  相似文献   

4.
In the field of micro and mesoscale combustion, the feature of flame-wall thermal coupling is of great significance because of its small scale nature. Thus, this work provides a comprehensive heat transfer analysis in cylindrical combustors from the perspective of numerical simulation. The combustor has a fixed length-to-diameter aspect ratio of 10, and the channel diameter is scaling up from 1 mm to 11 mm to explore the influence of chamber dimension on heat transfer and flame structure. The distribution of convective and radiative heat flux on inner surface, contribution of thermal radiation are given. Moreover, the role of radiation in flame structure is analyzed, and the convective and radiative heat losses are quantitatively analyzed. We find that radiative heat flux is smaller compared to convective heat flux, and the proportion of radiative heat flux becomes larger with an increasing diameter. Thermal radiation does not change the flame structure when the diameter is less than 3 mm. When the diameter is greater than 5 mm, thermal radiation changes the location of flame front. The heat loss becomes larger at a smaller diameter, and heat loss ratio can reach approximately 73.6% in the combustor with diameter of 1 mm.  相似文献   

5.
The calculation of radiative transfer within a sooty turbulent ethylene-air diffusion jet flame has been carried out by using a Monte Carlo method and an accurate CK model for the gases. The influence of the turbulence-radiation interaction (TRI) has been studied. In the TRI modeling, the radiative properties of the assumed homogeneous turbulent structures are randomly obtained from a multidimensional probability density function (PDF) of the reaction progress variable, of the mixture ratio and of the soot volume fraction. This joint PDF is obtained from an Eulerian-Lagrangian turbulent combustion model and the sizes of the turbulent structures are directly derived from a k-? model. In the considered flame, the TRI effect is an increase of the radiative heat loss by about 30%. The radiative heat loss becomes almost equal to one-third of the chemical heat release. Soot particles play the most important role in the global radiative heat loss but the influence of gaseous species like CO2 and H2O can be important in the local energy balance.  相似文献   

6.
The effect of oxygen content and of the combustion air velocity on soot formation was studied in acetylene diffusion flames. These flames were produced in a burner with a parallel annular coaxial flow of oxidizer. The effect on the flame axial temperature profile was also evaluated. The soot volume fraction was calculated by the laser light extinction methodology. The oxygen content in the combustion air was smaller than 30%, which does not require significant retrofit of existent equipment when the combustion conditions are varied. The results suggest that the parallel manipulation of the oxygen content and of the oxidizer velocity can provide means for managing soot formation and distribution. The formation of soot in industrial combustion systems is of interest in engineering, because the presence of soot in the flame enhances the heat transfer from the combustion gases by thermal radiation, increases the need for burner maintenance, and constitutes an environmental problem when emitted in the atmosphere.  相似文献   

7.
The effect of hydrogen addition in methane–air premixed flames has been examined from a swirl-stabilized combustor under unconfined flame conditions. Different swirlers have been examined to investigate the effect of swirl intensity on enriching methane–air flame with hydrogen in a laboratory-scale premixed combustor operated at 5.81 kW. The hydrogen-enriched methane fuel and air were mixed in a pre-mixer and introduced into the burner having swirlers of different swirl vane angles that provided different swirl strengths. The combustion characteristics of hydrogen-enriched methane–air flames at fixed thermal load but different swirl strengths were examined using particle image velocimetry (PIV), OH chemiluminescence, gas analyzers, and micro-thermocouple diagnostics to provide information on flow field, combustion generated OH radical and gas species concentration, and temperature distribution, respectively. The results show that higher combustibility of hydrogen assists to promote faster chemical reaction, raises temperature in the reaction zone and reduces the recirculation flow in the reaction zone. The upstream of flame region is more dependent on the swirl strength than the effect of hydrogen addition to methane fuel. At lower swirl strength condition the NO concentration in the reaction zone reduces with increase in hydrogen content in the fuel mixture. Higher combustibility of hydrogen accelerates the flow to reduce the residence time of hot product gases in the high temperature reaction zone. At higher swirl strength the NO concentration increases with increase in hydrogen content in the fuel mixture. The effect of dynamic expansion of the gases with hydrogen addition appears to be more dominant to reduce the recirculation of relatively cooler gases into the reaction zone. NO concentration also increases with decrease in the swirl strength.  相似文献   

8.
This work describes the application and the performance of a new radiation model in CFD calculations for the simulation of thermal radiation transfer effects on a fire scenario. A 3D Cartesian coordinates radiative heat transfer procedure based on coupling of the FTn finite volume method (FTnFVM) with the bounded high-order resolution CLAM scheme is developed. The narrow-band based weighted-sum-of-gray-gases (NB-WSGG) model is applied to take account of nongray effects by CO2, H2O and soot. To treat irregular boundaries, the present model used the blocked-off-region procedure. This radiation code is implemented in the Fire Dynamics Simulator (FDS), a Computational-Fluid-Dynamics-based fire model, where a the combustion is represented by means of the mixture fraction with a single step chemical reaction model and the Large Eddy Simulation (LES) is used to model the dissipative processes. Computational results with and without radiation effects are compared against available experimental data and quasi-steady state law correlations of in-rack storage fire, which consists a complex configuration of double tri-wall corrugated paper cartons placed onto a wood pallet. Sensibility analyses of spatial and angular grids demonstrate the improvements due to the FTnFVM and to the CLAM scheme in the configuration studied. Results show that the simulations of the flame height, the gas temperature and the gas velocity are strongly influenced by thermal radiation. Overall, simulations predicted closer profiles to the experimental results only when the nongray-sooting radiation model was incorporated and an over-prediction of the gas temperature and the flame height is found when radiation is neglected. A sensibility analysis has shown that the flame characteristics are strongly affected by the soot yield.  相似文献   

9.
《Combustion and Flame》2004,136(1-2):51-71
A statistical (Monte Carlo) method for radiative heat transfer has been incorporated in CFD modeling of buoyant turbulent diffusion flames in stagnant air and in a cross-wind. The model and the computational tool have been developed and applied to simulate both burner flames with controlled fuel supply rate and in self-sustained pool fires with burning rates coupled with flame radiation. The gas–soot mixture was treated either as gray (using the effective absorption coefficient derived from total emissivity data or the Planck mean absorption coefficient) or as non-gray (using the weighed sum of gray gases model). The comparison of predicted radiative heat fluxes indicates applicability of the gray media assumption in modeling of thermal radiation in case of high soot content. The effect of turbulence-radiation interaction is approximately taken into account in calculation of radiation emission, which is corrected to allow for temperature self-correlation and absorption-temperature correlation. In modeling buoyant propane flames in still air above 0.3 m diameter burner, extensive comparison is presented of the predictions with the measurements of gas species concentrations, temperature, velocity and their turbulent fluctuations, and radiative heat fluxes obtained in flames with different heat release rates. Similar to previously published experimental data, the predicted burning rate of flames above the acetone pools exposed to flame radiation increases with the pool diameter and approaches a constant level for large pool sizes. The magnitude of predicted burning rates is shown to be in agreement with the reported measurements. Augmentation of burning rate of the pool fire in a cross-wind because of increased net radiative heat flux received by the fuel surface and non-monotonic dependence of burning rate on cross-wind velocity, subject to the pool diameter, is predicted. The statistical treatment of thermal radiation transfer has been found to be robust and computationally efficient.  相似文献   

10.
Flame radiation     
Flame radiation is generally recognized as an important factor in fire phenomena and many combustion systems. Accurate prediction of flame radiation requires a good understanding of the radiative transport theory as well as detailed information on the radiative properties of the combustion products which generally consist of a mixture of gases plus soot particles. In this article the physics of gas radiation and its application to non-luminous flame calculations are first introduced. Subsequent formulation of luminous flame radiation incorporates properly the continuous soot emission. Effects of non-homogeneous distributions of temperature and gas partial pressures along the pathlength are discussed for both luminous and non-luminous flames. For engineering applications, useful radiation quantities such as the total emissivity, the mean absorption coefficient, and the radiation conductivity are expressed in simple analytical representations in terms of pertinent flame parameters.  相似文献   

11.
The effect of hydrogen addition in methane-air premixed flames has been examined from a swirl-stabilized combustor under confined conditions. The effect of hydrogen addition in methane-air flame has been examined over a range of conditions using a laboratory-scale premixed combustor operated at 5.81 kW. Different swirlers have been investigated to identify the role of swirl strength to the incoming mixture. The flame stability was examined for the effect of amount of hydrogen addition, combustion air flow rates and swirl strengths. This was carried out by comparing adiabatic flame temperatures at the lean flame limit. The combustion characteristics of hydrogen-enriched methane flames at constant heat load but different swirl strengths have been examined using particle image velocimetry (PIV), micro-thermocouples and OH chemiluminescence diagnostics that provided information on velocity, thermal field, and combustion generated OH species concentration in the flame, respectively. Gas analyzer was used to obtain NOx and CO concentration at the combustor exit. The results show that the lean stability limit is extended by hydrogen addition. The stability limit can reduce at higher swirl intensity to the fuel-air mixture operating at lower adiabatic flame temperatures. The addition of hydrogen increases the NOx emission; however, this effect can be reduced by increasing either the excess air or swirl intensity. The emissions of NOx and CO from the premixed flame were also compared with a diffusion flame type combustor. The NOx emissions of hydrogen-enriched methane premixed flame were found to be lower than the corresponding diffusion flame under same operating conditions for the fuel-lean case.  相似文献   

12.
预混气体在多孔介质中往复式超绝热燃烧的数值研究   总被引:3,自引:0,他引:3  
根据气、固两相局部非热平衡假设,建立了RSCP系统的二维非稳态数学模型,对于固体能量方程中的辐射源项采用辐射传递的有限体积法求解,研究了当量比、换向半周期、混合气流速对温度分布、辐射热流量和放热率的影响,考察了最高温升和可燃极限与这些参数之间的关联.研究表明,燃烧室内温度呈梯形分布,高温区较宽;气体的最高温度明显高于绝热火焰温度;贫可燃极限显著扩展,对提高燃烧效率和节约能源有重要作用。  相似文献   

13.
Flow and heat transfer predictions in modern low emission combustors are critical to maintaining the liner wall at reasonable temperatures. This study is the first to focus on a critical issue for combustor design. The objective of this paper is to understand the effect of different swirl angle for a dry low emission (DLE) combustor on flow and heat transfer distributions. This paper provides the effect of fuel nozzle swirl angle on velocity distributions, temperature, and surface heat transfer coefficients. A simple test model is investigated with flow through fuel nozzles without reactive flow. The fuel nozzle angle is varied to obtain different swirl conditions inside the combustor. The effect of flow Reynolds number and swirl number are investigated using FLUENT. Different RANS-based turbulence models are tested to determine the ability of these models to predict the swirling flow. For comparison, different turbulence models such as standard k ? ε, realizable k ? ε, and shear stress transport (SST) k?ω turbulence model were studied for non-reactive flow conditions. The results show that, for a high degree swirl flow, the SST k?ω model can provide more reasonable predictions for recirculation and high velocity gradients. With increasing swirl angle, the average surface heat transfer coefficient increases while the average static temperature will decrease. Preliminary analysis shows that the k?ω model is the best model for predicting swirling flows. Also critical is the effect of the swirling flows on the liner wall heat transfer. The strength and magnitude of the swirl determines the local heat transfer maxima location. This location needs to be cooled more effectively by various cooling schemes.  相似文献   

14.
ABSTRACT

This work presents a numerical study of radiation heat transfer and its interaction with gray and spectral radiation of combustion products and soot that are formed in a turbulent non-premixed combustion process. To this purpose, weighted sum of gray gases (WSGGM), Rayleigh, narrow-band model, and semi-empirical radiation properties models are considered. Two situations are studied ?1-D radiation problem and non-premixed gaseous combustion process. The results demonstrate that the models exhibit discrepancies that are smaller than the available line-by-line or experimental data. A study of the factors that influence such a disagreement is presented, underscoring the role of the chemical kinetics of hydrocarbon species and soot oxidation.  相似文献   

15.
Experimental and numerical studies of combustion and multimode heat transfer in a porous medium, with and without a cyclic flow reversal of a mixture through a porous medium, were performed. Parametric studies were done in order to understand combustion characteristics such as maximum flame temperature and radiative heat flux using a one‐ dimensional conduction, convection, radiation and premixed flame model. The porous medium was assumed to emit and absorb radiant energy, while scattering is ignored. Non‐local thermodynamic equilibrium between the solid an d gas is taken into account by introducing separate energy equations for the gas and the solid phase. As a prelimina ry study, the combustion regime was described by a one‐step global mechanism with an internal heat source uniformly dist ributed along the reaction zone. The effects of the flame position, cyclic flow reversal, period of the cyclic flow rever sal, the optical thickness and the flow velocity on the burner performance were clarified by a rigorous radiation analysis. Th e model was validated by comparing the theoretical results with the experiments. It was shown that, for maximizing the fl ame temperature and the net radiative heat flux feedback, the flame should be stabilized near the centre of the po rous medium with a cyclic flow reversal, the period of which should be as small as possible. A high optical thickness prod uced a high flame temperature and a high net radiative feedback. Also, a high flow velocity at low period of the cyclic f low reversal of mixture yielded a high value of both the flame temperature and the net radiative feedback. Thermal structure predictions in terms of the gas‐phase and the solid‐phase temperature distributions along the axis of the combustor show good agreement with the experimental ones. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The influences of thermophysical properties of porous media on superadiabatic combustion with reciprocating flow is numerically studied in order to improve the understanding of the complex heat transfer and optimum design of the combustor. The heat transfer performance of a porous media combustor strongly depends on the thermophysical properties of the porous material. In order to explore how the material properties influence reciprocating superadiabatic combustion of premixed gases in porous media (short for RSCP), a two‐dimensional mathematical model of a simplified RSCP combustor is developed based on the hypothesis of local thermal non‐equilibrium between the solid and the gas phases by solving separate energy equations for these two phases. The porous media is assumed to emit, absorb, and isotropically scatter radiation. The finite‐volume method is used for computing radiation heat transfer processes. The flow and temperature fields are calculated by solving the mass, moment, gas and solid energy, and species conservation equations with a finite difference/control volume approach. Since the mass fraction conservation equations are stiff, an operator splitting method is used to solve them. The results show that the volumetric convective heat transfer coefficient and extinction coefficient of the porous media obviously affect the temperature distributions of the combustion chamber and burning speed of the gases, but thermal conductivity does not have an obvious effect. It indicates that convective heat transfer and heat radiation are the dominating ways of heat transfer, while heat conduction is a little less important. The specific heat of the porous media also has a remarkable impact on temperature distribution of gases and heat release rate. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(5): 336–350, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20120  相似文献   

17.
Predicting thermal radiation for turbulent combustion highlights the significance of turbulence radiation interactions (TRI). Thermal radiation behaviors of methane/hydrogen flames under elevated pressures are investigated numerically using the developed TRI module integrated into CFD codes. The updated non-gray weighted sum of gray gases model is used to calculate the radiative properties of participating media. TRI effects have been analyzed with 0%–50% volumetric fraction of hydrogen in the methane/hydrogen blended fuels under 1–5 atm working pressures. Employing the radiation model considering TRI achieves closer predicted consistency to the experimental data. Only thermal radiation makes the flame temperature dropped about 60–140 K, while the predicted radiative source term calculated with TRI is higher than that without TRI, which results in a colder flame (approximately 13–60 K lower). The impact of TRI on the radiation behavior is enhanced in hydrogen-enriched high-pressure flame as the predicted radiation heat flux and radiative source term are increased above 25% than that without TRI. On account of TRI effect, the net radiative heat loss increases almost 50% at elevated pressure. The strong radiation of participating media in methane/hydrogen flames under elevated pressures emphasizes the importance of TRI effect on accurate predictions of thermal radiation and NO emission.  相似文献   

18.
A neural network correlation, RAD-NNET, is developed to simulate the realistic effect of non-gray radiative absorption by a homogeneous mixture of combustion gases (CO2 and H2O) and soot using numerical data generated by RADCAL. RAD-NNET is then applied to assess the accuracy of some commonly accepted approximate approaches to evaluate radiative heat transfer in three-dimensional non-gray media. Results show that there are significant errors associated with the current approximate approaches. RAD-NNET can be readily implemented in commercial CFD codes to greatly enhance the accuracy of simulation of radiative heat transfer in practical engineering systems.  相似文献   

19.
A simple methodology for numerical modelling of total heat transfer in an axisymmetric, cylindrical pulverized coal-fired furnace is introduced. The solution for the flow field and energy equations are coupled with the solution of the radiative transfer equation. The SIMPLER code is employed to solve all the equations numerically. The radiation part is modelled using the first-order spherical harmonics approximation. The radiative properties of the gases and particulates such as soot, coal/char and fly-ash are obtained locally to account for the temperature and concentration distribution effects. Using a k - ε model, the turbulence closure is obtained. Parametric studies are performed and are presented graphically to demonstrate the effects of particulate concentrations on the distributions of medium radiative and physical properties, temperature, and the wall total and radiative heat fluxes.  相似文献   

20.
This article is a comparative study of how the injection of micro kerosene droplets and pulverized anthracite coal particles affects soot particle nucleation inside natural gas flame and, subsequently, radiation. To this end, the yellow chemiluminescence of soot particles and IR photography were used to locate radiative soot particles and discover their qualitative distribution. The IR filter was tested with a Thermo Nicolet Avatar 370 FTIR Spectrometer for its spectral transmittance to be specified. Also, the spectral absorbance of soot particles, which are formed in flame, was measured by BOMEM FTIR. Furthermore, the variations of flame temperature, transient heat transfer, and thermal efficiency were investigated. The results indicate that, for equal heating values, kerosene droplets are more effective than coal particles in improving the radiation and thermal characteristics of natural gas flame. Also, kerosene droplets cause a higher rise in the temperature in flame downstream and make the axial flame temperature more uniform than coal particles do. In quantitative terms, when kerosene droplets were injected, the radiative heat transfer and thermal efficiency of flame were 93% and 35% higher than the corresponding values for the coal particles injection mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号