首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical simulation was conducted to investigate convective heat transfer from small and compact coiled pipes heat exchangers using computational fluid dynamics (CFD) software Fluent V6. One fluid (air) moves over the coiled pipe while a second fluid (refrigerant R141B) at different temperature flows through the pipe. The studied heat exchanger is composed with bends and straight tubes. Calculations were done for two cases with different outside flow arrangements. The simulation results showed remarkable differences in the flow characteristics and heat transfer rate of different single tubes of the entire heat exchangers. The temperature distribution and heat transfer are mainly influenced by temperature gradient, backflow conditions, exterior flow velocity, and surface area. The results also show the effect of the bends on the flow in straight tubes and vice-versa.  相似文献   

2.
Wastewater treatment is one of the most effective solutions to manage the problem of water scarcity. Falling film evaporators are excellent technology in wastewater treatment plants. These wastewater evaporators provide high heat transfer, short residence time in the heating zone, and high-purity distilled water. In the present study, the mechanism of turbulent falling film evaporation in a vertical tube has been investigated. A model has been developed for symmetrical two-dimensional pure and saline water flow in a vertical tube under constant wall heat flux. The numerical simulation has been carried out by a commercial computational fluid dynamics code. The evaporation of saturated liquid film is simulated utilizing a two-phase volume of fluid method and Tanasawa phase-change model. The main objective of this study is to evaluate the effects of water salinity, liquid Reynolds number, wall heat flux, and liquid film thickness on the two-phase heat transfer coefficient and vapor volume fraction. The numerical heat transfer coefficients are compared with the obtained results by Chen's empirical correlation. With a MAPE ≤ 11%, this study proves that the numerical method is highly effective at predicting the heat transfer coefficient. Moreover, the empirical coefficient of the Tanasawa model and the minimum thickness of the falling film are determined.  相似文献   

3.
An experiment was carried out to investigate the characteristics of the evaporation heat transfer and pressure drop for refrigerant R-134a flowing in a horizontal small circular pipe having an inside diameter of 2.0 mm. The data are useful in designing more compact and effective evaporators for various refrigeration and air conditioning systems. The effects of the imposed wall heat flux, mass flux, vapor quality and saturation temperature of R-134a on the measured evaporation heat transfer and pressure drop were examined in detail. When compared with the data for larger pipes (Di ≥ 8.0 mm) reported in the literature, the evaporation heat transfer coefficient for the small pipe considered here is about 30–80% higher for most situations. Moreover, we noted that in the small pipe the evaporation heat transfer coefficient is higher at a higher imposed wall heat flux except in the high vapor quality region, at a higher saturation temperature, and at a higher mass flux when the imposed heat flux is low. In addition, the measured pressure drop is higher for increases in the mass flux and imposed wall heat flux. Based on the present data, empirical correlations were proposed for the evaporation heat transfer coefficients and friction factors.  相似文献   

4.
Investigating performance of new mini-channel evaporators   总被引:1,自引:0,他引:1  
In this paper, a new type mini-channel evaporator is proposed and studied experimentally. The evaporator is made of two parallel flow mini-channel heat exchangers connected with a return tank. The experiments are performed on psychrometric calorimeter test bench and the results are compared with test data of the conventional laminated evaporators and used to verify a simulation software. The comparisons show that the new mini-channel evaporator has advantages on volume (17.2% smaller), weight (2.8% lighter) and heat transfer (4.3% higher), but a little penalty on air and refrigerant side pressure drop. The test data have a good agreement with the simulation results using academic software. The effect of louver fin shape on performance is studied and the results show the louver fin with a flat top reduces the air side pressure drop while maintaining the same heat transfer rate as compared to mini-channel evaporator with the corrugated louver fin. The effect of refrigerant side arrangement on the evaporator performance is researched experimentally and the experimental results show that the two-pass flow arrangement is better for heat transfer and refrigerant side pressure drop reduction.  相似文献   

5.
《Applied Thermal Engineering》2002,22(14):1535-1548
In this paper, an analytical study on the influence of thermophysical properties on heat transfer characteristics of two-phase flow boiling of some refrigerant mixtures in air/refrigerant horizontal enhanced surface tubing is presented.Correlations were proposed to predict the thermophysical properties of refrigerant mixtures such as thermal conductivity and viscosity as well as their impact on the heat transfer characteristics such as average heat transfer coefficients, and pressure drops of R-507, R-404A, R-410A, and R-407C in two-phase flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture's composition.It was also evident that the proposed improved correlations for predicting the thermophysical properties were applicable to the entire heat and mass flux, investigated in the present study. The deviation between the experimental and predicted value using new and improved correlations for the heat transfer coefficient and pressure drop were <±20 %, for the majority of data.  相似文献   

6.
《Applied Thermal Engineering》2003,23(15):1947-1958
The study is about the thermal control of porous walls submitted to severe heat fluxes. The numerical approach model of heat transfer, developed, is based on energy balance equation. The governing parameters are the volumetric heat transfer coefficient, the equivalent thermal conductivity of the material and fluid flow characteristics. The interactive effects of these parameters on heat transfer are presented to permit to understand the relative importance of varied phenomena occurring. The validity of the results is verified in a thermal behavior study of a porous plate submitted to a heat flux up to 3500 K and cooled by a refrigerant fluid. Good agreement with the previsions is obtained.  相似文献   

7.
Freezing of unpackaged foods induces mass transfer in the form of surface ice sublimation, which in turn modifies heat transfer conditions. At present there are no simplified methods for predicting freezing times when surface dehydration occurs. This paper uses a previously developed model for the simulation of simultaneous heat and mass transfer during food freezing and storage to generate a complete set of predicted freezing times when dehydration occurs. Based on these data a simplified analytical method for the prediction of freezing time during freezing of unpackaged frozen foods was developed. The method accounts for product characteristics (shape, size and composition) and operating conditions (initial and refrigerant temperature, heat transfer coefficient, relative humidity). The prediction equation is very simple and results of its use—simulating usual freezing conditions for different products—shows very good accuracy when tested against the previously cited numerical model and all the available experimental data.  相似文献   

8.
In this paper, an experimental study on the influence of magnetohydrodynamic (MHD) on heat transfer characteristics of two‐phase flow boiling of some refrigerant mixtures in air/refrigerant horizontal enhanced surface tubing is presented. Correlations were proposed to predict the impact of MHD on the heat transfer characteristics such as average heat transfer coefficients, and pressure drops of R‐507, R‐404A, R‐410A, and R‐407C in two‐phase flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture's composition. It was also evident that the proposed correlations for predicting the heat transfer characteristics were applicable to the entire heat and mass flux, investigated in the present study. The deviation between the experimental and predicted value using new and improved correlations for the heat transfer coefficient and pressure drop were less than ±20%, for the majority of data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a parametric analysis of refrigerant flow through capillary tube–suction line heat exchangers, used in domestic refrigeration systems. The analysis is based on a homogeneous model developed by the authors. The model is based on the numerical solution of fundamental equations of conservation of mass, momentum and energy of refrigerant flow. The refrigerant flow characteristics are investigated by varying thermodynamic (e.g. condensing temperature, evaporating temperature, inlet sub-cooling, suction line superheat) and geometric parameters (e.g. inlet adiabatic length, heat exchanger length and internal diameter of the capillary tube) of the capillary flow. The source of divergence in the numerical solution process is found to be the discontinuity in non-adiabatic capillary tube flow characteristics caused by re-condensation of the refrigerant within the capillary heat exchanger.  相似文献   

10.
In spray type evaporators using a conventional overhead spray method, a dry-out phenomenon occurs on the lower surface of the evaporator tubes under high surface heat flux conditions, and thus the heat transfer performance of the evaporator system is seriously impaired. This study shows that in a compact triangular-pitch shell-and-tube evaporator, the dry-out problem can be delayed through the use of an interior spray method, in which each heater tube within the bundle is sprayed simultaneously by two nozzles. The experimental results reveal that the shell-side heat transfer coefficients obtained using the proposed spray technique are significantly higher than those achieved in a conventional flooded type evaporator. The results also show that the heat transfer performance improves as the saturation temperature decreases since the density and thermal conductivity of the sprayed liquid increase. Finally, it is shown that for a constant heat flux and saturation temperature, the heat transfer coefficient increases with an increasing refrigerant mass flow rate.  相似文献   

11.
An experiment is conducted here to investigate the saturated flow boiling heat transfer characteristics of ozone friendly refrigerant R-410A in a horizontal annular finned duct. Meanwhile the associated bubble characteristics in the duct are also inspected from the flow visualization. The experimental data are presented in terms of saturated flow boiling curves, boiling heat transfer coefficients and flow photos. In addition, empirical correlation equations for the saturated flow boiling heat transfer coefficient and mean bubble departure diameter are proposed. The saturated flow boiling curves show that boiling hysteresis is insignificant in the flow and the wall superheat needed for the onset of nucleate boiling is slightly affected by the refrigerant mass flux. Besides, the boiling curves are mainly affected by the imposed heat flux and refrigerant mass flux. Moreover, the measured saturated flow boiling heat transfer coefficient increases with the imposed heat flux and refrigerant mass flux. Furthermore, at a higher refrigerant mass flux the departing bubbles are smaller.  相似文献   

12.
This article compares the application of the whole-domain function specification method (WDFSM) and the sequential function specification method (SFSM) to the inverse problem of transient conjugate heat transfer of laminar forced convection in a circular pipe. The two inverse methods are used to estimate the time-varying inlet temperature and the outer-wall heat flux simultaneously on the basis of temperature measurements taken at two different locations within the pipe flow. The numerical results reveal that the estimations obtained from the WDFSM method are marginally better than those obtained from the SFSM approach.  相似文献   

13.
Subcooled flow boiling heat transfer characteristics of refrigerant R-134a in a vertical plate heat exchanger (PHE) are investigated experimentally in this study. Besides, the associated bubble characteristics are also inspected by visualizing the boiling flow in the vertical PHE. In the experiment two vertical counterflow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Upflow boiling of subcooled refrigerant R-134a in one channel receives heat from the downflow of hot water in the other channel. The effects of the boiling heat flux, refrigerant mass flux, system pressure and inlet subcooling of R-134a on the subcooled boiling heat transfer are explored in detail. The results are presented in terms of the boiling curves and heat transfer coefficients. The measured data showed that the slopes of the boiling curves change significantly during the onset of nucleate boiling (ONB) especially at low mass flux and high saturation temperature. Besides, the boiling hysteresis is significant at a low refrigerant mass flux. The subcooled boiling heat transfer coefficient is affected noticeably by the mass flux of the refrigerant. However, increases in the inlet subcooling and saturation temperature only show slight improvement on the boiling heat transfer coefficient.The photos from the flow visualization reveal that at higher imposed heat flux the plate surface is covered with more bubbles and the bubble generation frequency is substantially higher, and the bubbles tend to coalesce to form big bubbles. But these big bubbles are prone to breaking up into small bubbles as they move over the corrugated plate, producing strong agitating flow motion and hence enhancing the boiling heat transfer. We also note that the bubbles nucleated from the plate are suppressed to a larger degree for higher inlet subcooling and mass flux. Finally, empirical correlations are proposed to correlate the present data for the heat transfer coefficient and the bubble departure diameter in terms of boiling, Froude, Reynolds and Jakob numbers.  相似文献   

14.
翅片管式蒸发器结霜性能的仿真与实验研究   总被引:1,自引:0,他引:1  
建立了结霜条件下翅片管蒸发器空气侧流动和换热的分布参数仿真模型,模型考虑了蒸发器结构、霜层厚度以及湿空气状态等参数在气流方向的沿程变化.对冰箱冷冻室蒸发器结霜条件下的动态性能进行了试验研究和数值模拟.结果表明,蒸发器结霜过程中的结霜量、能量传递系数和空气侧压降的计算值和试验值吻合良好,证明模型可以应用于翅片管蒸发器结霜性能的正确预测和优化设计分析.  相似文献   

15.
Experimental investigations were conducted to determine the condensation heat transfer and pressure drop of refrigerant R134a in annular helicoidal pipe at three inclination angles. The experiments were performed with the Reynolds number of R134a ranging from 60 to 200, and that of cooling water from 3600 to 22 000; temperatures of R134a at 30 °C and 35 °C, and cooling water at 16 °C, 20 °C and 24 °C. The experimental results indicated that the refrigerant Nusselt number was larger at lower refrigerant saturation temperature, and would increase with the increase of mass flow rates of refrigerant and cooling water. It was found that the refrigerant heat transfer coefficient of annular helicoidal pipe could be two times larger than that of equivalent plain straight pipe when the refrigerant Reynolds number was larger than 140. Comparison with identical helicoidal pipe with opposite flow channel arrangement revealed that the refrigerant heat transfer rate was larger when the refrigerant was flowing in the annular section at the cooling water Reynolds number larger than 4000, but the pressure drop was always larger in this flow channel arrangement.  相似文献   

16.
《Applied Thermal Engineering》2003,23(17):2151-2167
The use of ammonia as refrigerant is widespread in vapour compression and ammonia/water absorption systems. Ammonia is not actually used in low capacity applications mainly because of the lack of economical available equipment. For this reason, the objective of this study is the numerical and experimental evaluation of a small capacity ammonia shell and tube evaporator with enhanced heat transfer surfaces.An experimental system to evaluate small capacity heat exchangers was developed. A shell and tube evaporator with external low fin tubes was successfully tested. The experimental uncertainty for the evaporator capacity has been estimated within ±5.5%. The experimental results were used to validate a heat exchanger numerical tool that predicts reasonably well the cooling capacity and load outlet temperatures. The methodology presented in this work can be applied to evaluate other refrigerants in similar shell and tube evaporators and to optimize the design of an evaporator for a specific application.  相似文献   

17.
In this paper, a numerical study of the impact of the transport properties on the condensation characteristics of certain refrigerant mixtures is presented. New correlations have been developed to calculate the thermal conductivity and viscosity of some alternative refrigerant mixtures such as R-507, R-404A, R-407C, and R-410A. In addition, new improved condensation correlations have been developed and presented for predicting the heat transfer coefficient and pressure drop. The results clearly showed that the condensation characteristics were well predicted using the newly proposed correlations with mean deviation of ±10 and 20% for the heat transfer coefficient and pressure drop respectively. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
This research presents an experimental and numerical study on the heat transfer of α-Al2O3/water nanofluid flowing through the double pipe and shell and tube heat exchangers, under laminar flow conditions. Effects of important parameters such as hot and cold volume flow rates, nanofluid temperature, and nanoparticles concentration on the heat transfer characteristics are investigated. The results indicated that the heat transfer performance of both double pipe and shell and tube heat exchangers increases with increasing the hot and cold volume flow rates, as well as the particle concentrations and nanofluid inlet temperature. Compared with pure water, the results indicated that the heat transfer coefficients of nanofluid in the double pipe and shell and tube heat exchangers are higher than those of water by 13.2% and 21.3%, respectively. Also, the heat transfer performance of nanofluid in a shell and tube heat exchanger is 26.2% higher than the double pipe heat exchanger. A computational fluid dynamics (CFD) technique was used for heat transfer simulation in the previously mentioned heat exchangers. Computed overall heat transfer coefficients of the nanofluids are in good agreement with the experimental data.  相似文献   

19.
This paper deals with the flow behavior and the related heat transfer characteristics of stratified flow in axially rotating heat pipes with cylindrical and stepped wall configurations. Flow patterns are presented with existing experimental data of heat transfer in cylindrical and stepped wall rotating heat pipes. Theoretical and semi-empirical models for calculation of the condensation and evaporation heat transfer coefficients are developed. Key dimensionless numbers such as Froude, Galileo, G and ξ-number are identified. Existing experimental data from a rotating cylindrical heat pipe are analyzed and used for regression based on semi-empirical models. Good agreement between the predicted results and experimental data was obtained. Comparison between the present heat transfer models rotating cylindrical wall heat pipes and experimental data from a stepped wall heat pipe shows that the present models can be used to predict the condensation and evaporation heat transfer coefficients in a rotating stepped wall heat pipe.  相似文献   

20.
The present experimental and numerical work investigates the effect of metallic porous materials, inserted in a pipe, on the rate of heat transfer. The pipe is subjected to a constant and uniform heat flux. The effects of porosity, porous material diameter and thermal conductivity as well as Reynolds number on the heat transfer rate and pressure drop are investigated. The results are compared with the clear flow case where no porous material was used. The results obtained lead to the conclusion that higher heat transfer rates can be achieved using porous inserts at the expense of a reasonable pressure drop. Also, it is shown that for an accurate simulation of heat transfer when a porous insert is employed its effective thermal conductivity should be carefully evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号