首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Effects of pulsation on flow and heat transfer characteristics are experimentally examined in the pulsating pipe flows having sinusoidal velocity fluctuations around a nonzero mean. By systematically varying three pulsation parameters (the amplitude, frequency, and mean velocity), time-averaged and fluctuating temperature profiles are measured under the heating condition of constant wall temperature using saturated vapor. The mean Nusselt number, Nup, is calculated, and compared with that in ordinary turbulent pipe flows without pulsation. The results show that Nup, decreases initially as the pulsation amplitude increases, then recovers gradually, and finally becomes much greater than the original value. In pulsating pipe flows with a nonzero mean velocity, therefore, pulsation cannot always promote heat transfer, but sometimes suppresses it, depending mainly on the pulsation amplitude and mean velocity. It is also found that these heat transfer characteristics of a pulsating pipe flow are controlled by the transition of flow patterns with pulsation amplitude from a fully turbulent flow to a conditionally turbulent flow via a transitional flow. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res, 25(5): 323–341, 1996  相似文献   

2.
A new AC/DC power conversion interface for the self-excited induction generator (SEIG) is proposed here. The proposed AC/DC conversion interface includes an excitation systemand a diode rectifier connected in parallel.The variable frequency AC power generated by the SEIG is converted into DC power by the diode rectifier.The DC power of the diode rectifier can charge a battery set and supply DC loads or be further converted into fixed-frequency AC power by an inverter for AC loads.The DC voltage is expected to be regulated in the above applications.The excitation system supplies an exciting reactive current to maintain the amplitude of the SEIG output voltage to be a constant value. Moreover, it can also serve as an active power filter to suppress the harmonic current generated by the diode rectifier. The excitation system is composed of an AC power capacitor and a power converter connected in series. The AC power capacitor is adapted to provide a basic reactive power, and it can also reduce the voltage rating and the capacity of the power converter. The salient point of the proposed AC/DC power conversion interface is that the capacity of the power converter in the AC/DC power conversion interface can be minimised, and the power loss of the AC/DC power conversion interface can also be reduced. A prototype is developed and tested to verify the performance of the proposed AC/DC power conversion interface.  相似文献   

3.
Convection heat transfer in pulsating turbulent flow with large velocity oscillating amplitudes in a pipe at constant wall temperature is numerically studied. A low-Reynolds-number (LRN) kε turbulent model is used in the turbulence modeling. The model analysis indicates that Womersley number is a very important parameter in the study of pulsating flow and heat transfer. Flow and heat transfer in a wide range of process parameters are investigated to reveal the velocity and temperature characteristics of the flow. The numerical calculation results show that in a pulsating turbulent flow there is an optimum Womersley number at which heat transfer is maximally enhanced. Both larger amplitude of velocity oscillation and flow reversal in the pulsating turbulent flow also greatly promote the heat transfer enhancement.  相似文献   

4.
5.
The present numerical investigation describes the influence of a transverse magnetic field on the heat and mass transfer characteristics of time‐dependent squeezed flow of Prandtl‐Eyring fluid past a horizontal sensor surface. The current physical problem is modeled based on the considered flow configuration. Also, the present problem is analyzed under the influence of Lorentz forces, to explore the impact of a magnetic field on the flow behaviour. The considered physical problem in the present study gives highly nonlinear coupled time‐dependent, two‐dimensional partial differential equations. The governing flow equations are reduced to the system of nonlinear ordinary differential equations by imposing the suitable similarity transformations on the laws of motion. Due to the inadequacy in the analytical methods, the present problem is solved by using the Runge‐Kutta fourth order integration scheme with shooting method. The flow and heat transfer behaviour of various control parameters are studied and presented in terms of graphs and tables. From the current investigation it is noticed that, the increasing magnetic parameter enhances the velocity field and diminishes the temperature profile in the flow region. Also, the magnifying permeable velocity parameter decreases the temperature field. The present similarity solutions are found to be in good agreement with previously published results.  相似文献   

6.
This paper describes a DC isolated network which is fed by distributed generation (DG) from photovoltaic (PV) renewable sources to supply unbalanced AC loads. The battery energy storage bank has been connected to the DC network via DC/DC converter called storage converter to control the network voltage and optimize the operation of the PV generation units. The PV units are connected to the DC network via its own DC/DC converter called PV converter to ensure the required power flow. The unbalanced AC loads are connected to the DC network via its own DC/AC converter called load converter without transformer. This paper proposes a novel control strategy for storage converter which has a DC voltage droop regulator. Also a novel control system based on Clarke and Park rotating frame has been proposed for load converters. In this paper, the proposed operation method is demonstrated by simulation of power transfer between PV units, unbalanced AC loads and battery units. The simulation results based on PSCAD/EMTDC software show that DC isolated distribution system including PV units can provide the balanced voltages to supply unbalanced AC loads.  相似文献   

7.
By the method of averaging over the ensemble of turbulent flow realizations, averaged heat transfer equations for a solid phase and a flow as a whole are derived. Closed expressions for the second single-point moments of the solid and carrier phase velocity and temperature fluctuations in terms of the second moments of the carrier phase velocity and temperature fluctuations in a non-uniform turbulent flow are found. Based on these expressions, a set of equations is written for the second single-point moments of the liquid phase velocity and temperature fluctuations in the presence of particles. Heat transfer calculations are carried out for turbulent flow of gas suspension in circular tubes. The effect of the relationship between the thermal and physical properties of the particle material and gas on the thermal characteristics of a two-phase flow is investigated. The predicted Nusselt numbers for a dusty flow agree satisfactorily with the experimental data.  相似文献   

8.
This study presents the numerical predictions on the turbulent fluid flow and heat transfer characteristics for rectangular channel with porous baffles which are arranged on the bottom and top channel walls in a periodically staggered way. The turbulent governing equations are solved by a control volume-based finite difference method with power-law scheme and the k-ε turbulence model associated with wall function to describe the turbulent structure. The velocity and pressure terms of momentum equations are solved by SIMPLE (semi-implicit method for pressure-linked equation) method.The parameters studied include the entrance Reynolds number Re (1×104-5×104), the baffle height (h=10, 20 and 30 mm) and kind of baffles (solid and porous); whereas the baffle spacing S/H are fixed at 1.0 and the working medium is air. The numerical calculations of the flow field indicate that the flow patterns around the porous- and solid-type baffles are entirely different due to different transport phenomena and it significantly influences the local heat transfer coefficient distributions. Relative to the solid-type baffle channel, the porous-type baffle channel has a lower friction factor due to less channel blockage.Concerning the heat transfer effect, both the solid-type and porous-type baffles walls enhanced the heat transfer relative to the smooth channel. It is further found that at the higher baffle height, the level of heat transfer augmentation is nearly the same for the porous-type baffle, the only difference being the Reynolds number dependence. As expected, the centerline-averaged Nusselt number ratio increases with increasing the baffle height because of the flow acceleration.  相似文献   

9.
The influence of temperature-dependent fluid properties on the hydro-magnetic flow and heat transfer over a stretching surface is studied. The stretching velocity and the transverse magnetic field are assumed to vary as a power of the distance from the origin. It is assumed that the fluid viscosity and the thermal conductivity vary as an inverse function and linear function of temperature, respectively. Using the similarity transformation, the governing coupled non-linear partial differential equations are transformed into coupled non-linear ordinary differential equations and are solved numerically by the Keller–Box method. The governing equations of the problem show that the flow and heat transfer characteristics depend on five parameters, namely the stretching parameter, viscosity parameter, magnetic parameter, variable thermal conductivity parameter, and the Prandtl number. The numerical values obtained for the velocity, temperature, skin friction, and the Nusselt number are presented through graphs and tables for several sets of values of the parameters. The effects of the parameters on the flow and heat transfer characteristics are discussed.  相似文献   

10.
Field synergy equation for turbulent heat transfer and its application   总被引:1,自引:0,他引:1  
A field synergy equation with a set of specified constraints for turbulent heat transfer developed based on the extremum entransy dissipation principle can be used to increase the field synergy between the time-averaged velocity and time-averaged temperature gradient fields over the entire fluid flow domain to optimize the heat transfer in turbulent flow. The solution of the field synergy equation gives the optimal flow field having the best field synergy for a given decrement of the mean kinetic energy, which maximizes the heat transfer. As an example, the field synergy analysis for turbulent heat transfer between parallel plates is presented. The analysis shows that a velocity field with small eddies near the boundary effectively enhances the heat transfer in turbulent flow especially when the eddy height which are perpendicular to the primary flow direction, are about half of the turbulent flow transition layer thickness. With the guide of this optimal velocity field, appropriate internal fins can be attached to the parallel plates to produce a velocity field close to the optimal one, so as to increase the field synergy and optimize the turbulent heat transfer.  相似文献   

11.
A numerical study of three-dimensional heat transfer and fluid flow in a moving gas metal arc welding (GMAW) process is performed by considering various driving forces of fluid flow such as buoyancy, Lorentz force, and surface tension. The computation of the current density distribution and the resulting Lorentz force field is performed by solving the Maxwell equations numerically in the domain of the workpiece. The phase change process during melting and solidification is modeled using the enthalpy-porosity technique. Mass and energy transports by droplet transfer are also considered through a thermal analysis of the electrode. The droplet heat addition to the molten pool is considered to be a volumetric heat source distributed in an imaginary cylindrical cavity within the weld pool ("cavity" model). This nature of the heat source distributed due to the falling droplets takes into account the momentum and thermal energy of the droplets. The numerical model is able to capture the well-known "finger" penetration commonly observed in the GMAW process. Numerical prediction regarding the weld pool shape and size is compared with the corresponding experimental results, showing good qualitative agreement between the two. The weld pool geometry is also found to be dependant on some key parameters of welding, such as the torch speed and power input to the workpiece.  相似文献   

12.
The article presents a numerical simulation of swirling turbulent flows and heat transfer in an annular duct. The time-averaged governing equations are solved, which are closed by a new algebraic Reynolds stress model (ASM). The simulation is performed under different flow conditions. The calculated results of gas axial and tangential velocities, turbulent kinetic energy, temperature, and local heat transfer coefficients on the inner and outer walls of the annulus are provided. They illustrate the effect of swirl number, inlet axial velocity, and ratio of inner to outer radius on the mean flow and turbulence properties, as well as on enhancing heat transfer in the annular duct.  相似文献   

13.
Experimental research has long shown that forced-convective heat transfer in wall-bounded turbulent flows of fluids in the supercritical thermodynamic state is not accurately predicted by correlations that have been developed for single-phase fluids in the subcritical thermodynamic state. In the present computational study, the statistical properties of turbulent flow as well as the development of coherent flow structures in a zero-pressuregradient flat-plate boundary layer are investigated in the absence of body forces, where the working fluid is in the supercritical thermodynamic state. The simulated boundary layers are developed to a friction Reynolds number of 250 for two heat-flux to mass-flux ratios corresponding to cases where normal heat transfer and improved heat transfer are observed. In the case where improved heat transfer is observed, spanwise spacing of the near-wall coherent flow structures is reduced due to a relatively less stable flow environment resulting from the lower magnitudes of the wall-normal viscosity-gradient profile.  相似文献   

14.
Recently, power electronic transformers (PETs) have received widespread attention owing to their flexible networking, diverse operating modes, and abundant control objects. In this study, we established a steady-state model of PETs and applied it to the power flow calculation of AC–DC hybrid systems with PETs, considering the topology, power balance, loss, and control characteristics of multi-port PETs. To address new problems caused by the introduction of the PET port and control equations to the power flow calculation, this study proposes an iterative method of AC–DC mixed power flow decoupling based on step optimization, which can achieve AC–DC decoupling and effectively improve convergence. The results show that the proposed algorithm improves the iterative method and overcomes the overcorrection and initial value sensitivity problems of conventional iterative algorithms.  相似文献   

15.
An analytical solution is presented to study the heat transfer characteristics of the combined pressure – electroosmotically driven flow in planar microchannels. The physical model includes the Joule heating effect to predict the convective heat transfer coefficient in two dimensional microchannels. The velocity field, which is a function of external electrical field, electroosmotic mobility, fluid viscosity and the pressure gradient, is obtained by solving the hydrodynamically fully-developed laminar Navier–Stokes equations considering the electrokinetic body force for low wall zeta potentials. Then, assuming a thermally fully-developed flow, the temperature distribution and the Nusselt number is obtained for a constant wall heat flux boundary condition. The fully-developed temperature profile and the Nusselt number depend on velocity field, channel height, solid/liquid interface properties and the imposed wall heat flux. A parametric study is presented to evaluate the significance of various parameters and in each case, the maximum heat transfer rate is obtained.  相似文献   

16.
This work presents a computational fluid dynamics (CFD) calculation to investigate the flow field and the heat transfer characteristics in a tangential inlet cyclone which is mainly used for the separation of the dens phase of a two phase flow. Governing equations for the steady turbulent 3D flow were solved numerically under certain boundary conditions covering an inlet velocity range of 3 to 30 m/s. Finite volume based Fluent software was used and the RNG k −  turbulence model was adopted for the modeling highly swirling turbulent flow. Good agreement was found between computed pressure drop and experimental data available in the literature. The structure of the vortices and variation of local heat transfer were studied under the effects of inlet velocity.  相似文献   

17.
In the present study, the natural convective heat transfer in the turbulent flow of water/CuO nanofluid with volumetric radiation and magnetic field inside a tall enclosure has been numerically investigated. The thermophysical properties of nanofluid have been considered variable with temperature and the effects of Brownian motion of nanoparticles have been considered. The main objective of this work is an investigation of the effect of using water/CuO nanofluid and presence of magnetic field on turbulent natural convection in three types of enclosures (vertical, inclined, and horizontal) by considering the volumetric radiation. The governing equations on turbulent flow domain under the influence of the magnetic field and by considering the combination of volumetric radiation and natural convection have been solved by a coupled algorithm. For validating the present research, a comparison has been carried out with the laminar natural convection flow under the influence of the magnetic field and radiation effects and also, the natural turbulent convection flow of previous studies and a proper coincidence has been achieved. The results indicated that by increasing volume fraction and Hartmann number the average Nusselt number enhances and reduces, respectively. By adding 1% CuO nanoparticles to the base fluid, heat transfer improves from 10.59% to 17.05%. However, by increasing the volume fraction from 1% to 4%, heat transfer improves from 1.35% to 4.90%. By increasing Hartmann number from 0 to 600, heat transfer reduces from 9.29% to 22.07%. Also, the results show that the ratio of deviation angle of the enclosure to the horizontal surface has considerable effects on heat transfer performance. Therefore, in similar conditions, the inclined enclosure with a deviation angle of 45° compared to the vertical and horizontal enclosure has better thermal performance.  相似文献   

18.
基于数值模拟的方法,分析在低雷诺数下波壁管波形变化对流体流动与传热特性的影响,并分析了相同功耗下波壁管的综合传热性能。结果表明:波幅和波长变化对波壁管传热均有影响,强化效果与波幅成正比,与波长成反比;当功耗相同时,小波幅的波壁管有较好的综合换热效果,大波幅的波壁管强化传热以较大能量消耗作为代价;雷诺数大于2 000时,增大波长能达到较好的综合换热效果。  相似文献   

19.
The transport equations for Reynolds stress and heat flux in turbulent flow with streamline curvature are closed by modelling the redistributive terms in a manner which reflects the modification of the fluctuating pressure field by the presence of a wall. A set of algebraic equations is derived for thin shear layers with moderate curvature from which the effects of curvature on the mixing-length and the turbulent Prandtl number are deduced. Calculations show that heat transfer is appreciably less affected by streamline curvature than is shear stress.  相似文献   

20.
Saltwater or brackish water is used as a coolant in most industries. Therefore, understanding the heat transfer processes and hydrodynamics during the natural convection in saline water is crucial for enhancing the efficiency of a heat exchanger. This study elaborates on the natural convection heat transfer in saline water under atmospheric conditions. A DC power supply is used to regulate the power given to the heater in a liquid pool for thermal analysis. The pool liquid comprises solutions with varying salinity from 0%, 0.2%, 0.5%, and 2%. The effect of varying salinity on the heat transfer coefficient and the thermal aspects encountered during the desalination process is analyzed. The temperature distribution across the surface of the heater is monitored using an infrared camera. It is studied for the solution of different salinities. The heat transfer coefficient and Nusselt number are investigated during natural convection for normal water and salt solution of different concentrations. It is inferred from the study that in the regime of natural convection, there is no significant difference in the Nusselt number for normal water and saltwater for the lower value of temperature difference between the plate and pool. The heat transfer coefficient in 0.2% saline water is higher as compared to the other solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号