首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Wear》2006,260(1-2):215-222
Microplasma oxidation (MPO) has recently been studied as a cost-effective plasma electrolytic process to provide thick and hard ceramic coatings with excellent surface load-bearing capacity on aluminum alloys. However, for sliding wear applications, such ceramic coatings often exhibit relatively high friction coefficients against many counterface materials. Although coatings deposited by physical vapour deposition (PVD) techniques such as TiN coatings are well known for providing surfaces with a high hardness, in practice they often exhibit poor performance under mechanical loading, since the coatings are usually too thin to protect the substrate from the contact conditions. In this paper, these challenges were overcome by a duplex process of microplasma oxidation and arc ion plating (AIP), in which an alumina layer Al2O3 was deposited on an Al alloy substrate (using MPO as a pre-treatment process) for load support, and a TiN hard coatings were deposited (using AIP) on top of the Al2O3 layer for low friction coefficient. Microhardness measurements, pin-on-disc sliding wear tests, and antiwear tests using a Timken tester were performed to evaluate the mechanical and tribological properties. Scanning electron microscopy (SEM) was used to observe coating morphology, and to examine wear scars from pin-on-disc test. The research demonstrates that a hard and uniform TiN coating, with good adhesion and a low coefficient of friction, can successfully be deposited on top of an alumina intermediate layer to provide excellent load support. The investigations indicate that a duplex combination of MPO coating and TiN PVD coating represents a promising technique for surface modification of Al alloys for heavy surface load bearing application.  相似文献   

2.
The potential of coatings to protect components against wear and to reduce friction has led to a large variety of protective coatings. In order to check the success of coating modifications and to find solutions for different purposes, initial tests with laboratory tribometers are usually done to give information about the performance of a coating. Different Ti‐based coatings (TiN, Ti(C,N), and TiAlN) and NiP were tested in comparison to coatings with an additional diamond‐like carbon (DLC) top coating. Tests were done in laboratory air at room temperature with oscillating sliding (gross slip fretting) with a ball‐on‐disc arrangement against a ceramic ball (Al2O3). Special attention was paid to possible effects of moisture (relative humidity). The coefficient of friction was measured on line, and the volumetric wear at the disc was determined after the test from microscopic measurements of the wear scar and additional profiles. The friction and wear behaviour is quite different for the different coatings and depends more or less on the relative humidity. The DLC coating on top of the other coatings reduces friction and wear considerably. In normal and in moist air the coefficient of wear of the DLC top‐layer coating is significantly less than 10−6 mm3/Nm and the coefficient of friction is below 0.1. In dry air, however, there is a certain tendency to high wear and high friction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of the sliding speed on friction and wear characteristics of plasma-sprayed ceramic coatings (Al2O3-13% TiO2, ZrO2-8% Y2O3, Al2O3-modified) was studied. Plasma-sprayed coatings are not hard and have high layered structure. Abrasion of coatings in the friction pair with steel and bronze counter-bodies occurs through brittle detachment conglomerated regions with low cohesive resistance. The modified coating (Al2O3) has the highest wear resistance and the lower coefficient of friction compared to the coatings (Al2O3-13% TiO2, ZrO2-8% Y2O3) in the studied velocity range (0.1–10 mm/s). Laser melting can be used as an efficient way of increasing the tribotechnical properties of plasma-sprayed oxide coatings.  相似文献   

4.
Plasma sprayed ceramic coatings are used in a number of industries in which surface modification of components to compare tribological properties is important: so hence, are evaluations of their tribological properties. This paper presents a study on the wear behaviour of three ceramic coatings — Al2O3, TiO2 and Al2O3-TiO2combination — in the load and speed ranges of 5 to 50 N, and 0.3 to 10 m/s, respectively, on which few data are available in the literature. The tests were carried out using a standard dry sand rubber wheel abrasion test and a pin-on-disc machine under dry sliding conditions. It was found that a stick-slip effect seems to occur at low sliding speeds, and transition takes place at a sliding speed of around 4 m/s. Of the three ceramic coatings, TiO2 was found to be the most wear resistant, with the least friction coefficient, although it is less hard than the Al2O3 coatings. Scanning electron microscopy of the surface shows evidence of wear mechanisms such as plastic deformation, transfer-film formation, micro cracks, and grain pull-out in the coatings.  相似文献   

5.
The friction and wear behaviour of thin hard coatings, such as TiN and the promising class of C-based coatings (a-C, a-C:H, and diamond for example), are compared under oscillating and reciprocating sliding conditions. The typical effects of test parameters, such as stroke, frequency, normal force, relative humidity and test duration, are described as a basis for the proper selection of test conditions or, conversely, for the selection of suitable coatings for particular practical applications. Friction and wear data from over 1000 vibrating tests using thin hard coatings against 100Cr6 and against Al2O3 have been compiled in a database. This allows easy manipulation and comparison of test results. Using selection criteria and filter procedures (e. g., lifetime of coatings, friction limits, and critical wear rate), suitable coating systems for different test conditions can be chosen from the database. The effects of test parameters on friction and wear behaviour and changes have anyway to be known for meaningful tribotesting, as well as for the selection of coatings.  相似文献   

6.
A TiAlSiN coating was deposited on AISI H13 hot work mould steel using a cathodic arc ion plating (CAIP). The microstructures, chemical composition and phases of the obtained coatings were analysed using a field emission scanning electronic microscope, energy dispersive spectrometer (EDS) and X-ray diffractometer, respectively. The high temperature friction-wear properties of TiAlSiN coating at the different wear speeds were investigated, and the wear mechanism was also discussed. The results show that the N of the TiAlSiN coating is not completely released at 800 °C, the diffraction peak of TiN still exists in this coating. In addition, the products of SiO2 and Al2O3 play a role of self-lubricating and wear resistance. The average coefficient of friction (COF) of the coatings at the wear speeds of 400, 600, and 800 r/min is 0.15, 0.22, and 0.17, respectively. The wear mechanism of TiAlSiN coating at 800 °C is primarily adhesive wear, accompanied by oxidation wear and abrasive wear.  相似文献   

7.
With wide applications of nickel-based superalloys in strategic fields, it has become increasingly necessary to evaluate the performance of different advanced cutting tools for machining such alloys. With a view to recommend a suitable cutting tool, the present work investigated various machinability characteristics of Incoloy 825 using an uncoated tool, chemical vapor deposition (CVD) of a bilayer of TiCN/Al2O3, and physical vapor deposition (PVD) of alternate layers of TiAlN/TiN-coated tools under varying machining conditions. The influence of cutting speed (51, 84, and 124 m/min) as well as feed (0.08, 0.14, and 0.2 mm/rev) was comparatively evaluated on surface roughness, cutting temperature, cutting force, coefficient of friction, chip thickness, and tool wear using different cutting tools. Although the CVD-coated tool was not useful in decreasing surface roughness and temperature, a significant reduction in cutting force and tool wear could be achieved with the same coated tool under a high cutting speed of 124 m/min. On the other hand, the PVD-coated tool outperformed the other tools in terms of machinability characteristics. This might be attributed to the excellent antifriction and antisticking property of TiN and good toughness due to the multilayer configuration in combination with a thermally resistant TiAlN phase. Adhesion, abrasion, edge chipping, and nose wear were the prominent wear mechanisms of the uncoated tool, followed by the CVD-coated tool. However, remarkable resistance to such wear was evident with the PVD TiAlN/TiN multilayer-coated tool.  相似文献   

8.
WS2 and WS2/Zr self-lubricating soft coatings were produced by medium-frequency magnetron sputtering, multi-arc ion plating and ion-beam-assisted deposition technique on the cemented carbide YT15 (WC + 15 % TiC + 6 % Co) substrates. Microstructural and fundamental properties of these coatings were examined. Sliding wear tests against 40Cr-hardened steel using a ball-on-disk tribometer method were carried out with these coated materials. The friction coefficient and wear rates were measured with various applied loads and sliding speeds. The wear surface features of the coatings were examined using SEM. The results showed that the WS-1 specimen (with WS2/Zr composite coating) has higher hardness and coating/substrate critical load compared with that of the WS-2 specimen (only with WS2 coating). The friction coefficient of WS-1 specimen increases with the increase in applied load and is quite insensitive to the sliding speed. The wear rate of the WS-1 specimen is almost constant under different applied loads and sliding speeds. The WS-1 specimen shows the smallest friction coefficient and wear rate among all the specimens tested under the same conditions. The WS-1 specimen exhibits improved friction behavior to that of the WS-2 specimen, and the antiwear lifetime of the WS2 coatings can be prolonged through adding Zr additives. The self-lubricating and wear mechanism of the WS2/Zr coating was also found from the sliding wear tests.  相似文献   

9.
A Ni-based alloy with 1.5 wt% of La2O3 powders was thermal sprayed onto steel substrate. The microstructure and dry sliding wear behavior of the coatings were studied by XRD, field emission gun scanning electron microscope (FEGSEM) and SEM analyses. The microstructure of the coating with 1.5 wt% of La2O3 differs widely from the coating without La2O3; the typical microstructure with 1.5 wt% of La2O3 is composed of net-like dendrite (Cr, Fe)23C6 and Cr7C3, cellular-dendrite Fe23(C, B)6, γ-Ni + Ni5Si2 interdendritic lamellar eutectic. Interestingly, significant amounts of net-like (Cr, Fe)23C6 and Cr7C3 hard phases as a wear-resistant skeleton were formed and uniformly dispersed in the coating. Meanwhile, blocky and rod-like hard-phase CrB scattered in the coating can also contribute to improving the wear resistance. The novel microstructure, therefore, is beneficial for wear resistance. Friction and wear tests without lubricant show that the friction coefficients of the coating are less than 0.57. There is an approximately linear relationship between friction coefficients and sliding speed. The wear rate slightly increases with an increase of load, and the wear rate of the coating slightly decreases with sliding speed.  相似文献   

10.
The tribological properties of reactor-grade NiCr-B hardfaced coating were studied at a constant load and sliding velocity. The objective of the present article is to investigate the changes in coefficient of friction that accompanies morphological and phase changes occurring in wear scars. Such changes result from the sliding with a spherical steel ball. The transition from the low to high coefficient of friction at higher sliding distance is attributed to severe cracking as well as fretting wear–induced deformation of surface oxide scales. Increased value of coefficient of friction arises from protracted sliding over longer distances continued to deform and detachment of weakly adhered oxides like Fe2O3 and Cr2O3. Such scales are tribochemically formed on the wear scars and contribute to alteration in the coefficient of friction. The evolution of oxide phases in wear scars is found to be one of the main mechanisms for dissipation of frictional force.  相似文献   

11.
The wear and sliding friction response of a hybrid copper metal matrix composite reinforced with 10 wt% of tin (Sn) and soft solid lubricant (1, 5, and 7 wt% of MoS2) fabricated by a powder metallurgy route was investigated. The influence of the percentages of reinforcement, load, sliding speed, and sliding distance on both the wear and friction coefficient were studied. The wear test with an experimental plan of six loads (5–30 N) and five sliding speeds (0.5–2.5 m/s) was conducted on a pin-on-disc machine to record loss in mass due to wear for two total sliding distances of 1,000 and 2,000 m. The results showed that the specific wear rate of the composites increased at room temperature with sliding distance and decreased with load. The wear resistance of the hybrid composite containing 7 wt% MoS2 was superior to that of the other composites. It was also observed that the specific wear rates of the composites decreased with the addition of MoS2. The 7 wt% MoS2 composites exhibited a very low coefficient of friction of 0.35. The hardness of the composite increased as the weight percentage of MoS2 increased. The wear and friction coefficient were mainly influenced by both the percentage of reinforcement and the load applied. Wear morphology was also studied using scanning electron microscopy and energy-dispersive X-ray analysis.  相似文献   

12.
The tribological characteristics of low-pressure plasma-sprayed (LPPS) Al2O3 coating sliding against alumina ball have been investigated from room temperature to 800 °C. These friction and wear data have been compared quantitatively with those of bulk sintered alumina to obtain a better understanding of wear mechanisms at elevated temperatures. The friction and wear of Al2O3 coating show a strong dependence on temperature, changing from a mild to a severe wear regime with the increase of temperature. The coefficient of friction at room temperature is approximately 0.17 to 0.42, depending on applied load. The tribochemical reaction between the coating surface and water vapor in the environment and the presence of the hydroxide film on the Al2O3 coating reduce the friction and wear at room temperature as contrasted to those of bulk sintered alumina. At intermediate temperatures, from 400 to 600 °C, the friction and wear behavior of Al2O3 coating depends on the inter-granular fracture and pull-out of Al2O3 grains. At above 700 °C, formation and deformation of fine grain layer, and abrasive wear in the form of removal of fine alumina grains further facilitate the friction and wear process of Al2O3 coating.  相似文献   

13.
《Tribology International》2003,36(4-6):305-309
Surface reactions on magnetic recording disks have been studied during sliding with ceramic sliders in the main chamber of TOF-SIMS. Chemical change of lubricant oil in the wear track was observed by the chemical image of TOF-SIMS. The magnetic disk surface was covered with perfluoroalkyl polyether lubricant (Fomblin Zdol). The Si tip slider surface was covered with Al2O3, DLC, TiN or c-BN coating. Experimental conditions were as follows: 0.8 mN of load and a sliding speed of 0.01 m/s. Lubricant oils were decomposed with Al2O3 and TiN slider surfaces. Metal (Al, Ti) fluorides were detected by TOF-SIMS in the sliding track. Material transfer occurred by chemical wear of slider material. From TOF-SIMS observation, the decomposition of lubricant molecules was initiated at the end group of molecules (-CF2CH2OH). On the other hand, DLC and c-BN sliders suppressed the decomposition reaction of PFPE oils. In conclusion, hard and chemical inert materials such as DLC and c-BN are suitable for a long-life HDI.  相似文献   

14.
P.K. Philip 《Wear》1978,47(1):45-60
Carbides coated with TiC, TiN, TiC/TiN or TiC/Al2O3 coatings on a tough hard material base and TiC-containing hard material of modified composition and structure were used to investigate tool-wear and tool-life characteristics in face milling of martensitic steel of hardness 300–600 HV. Tool-life behaviour with increasing hardness and cutting speed was determined. Characteristic wear mechanisms are discussed on the basis of light and scanning electron microscopy observations.  相似文献   

15.
Flank wear progression and wear mechanisms of uncoated, coated with PVD applied single-layer TiAlN, and CVD applied multi-layer MT-TiCN/Al2O3/TiN cemented carbide inserts were analyzed during dry turning of hardened AISI 4340 steel (35 HRC). Experimental observations indicate that by applying a coating to the uncoated insert the limiting cutting speed increase from 62 to 200 m/min, which further extends up-to 300–350 m/min when using multi-layer coating scheme. Relatively lower wear rate seen when using single-layer TiAlN coated inserts. However, after removal of the thin layer of coating the wear rate increase rapidly, subsequently dominates the wear rate of multi-layer coated inserts. Cutting forces; especially axial and radial components have also shown the similar behavior and increase rapidly when the tool failure occurs. Flank wear, crater wear and catastrophic failure are the dominant forms of tool wear. Digital microscope and SEM images coupled with elemental analysis (EDAX) have been taken at various stages of tool life for understanding the wear mechanisms.  相似文献   

16.
In the present study, the sliding wear behavior of pulse-electrodeposited multilayer Ni-Fe coatings as a function of pulse parameters including frequency and duty cycle has been studied using pin-on-disc tests against an Al2O3 counterbody. Sliding wear was investigated with respect to the coefficient of friction (COF), worn surfaces, wear rate, and wear debris. The results of COF with sliding distance revealed a two-region state. At the start of the test the COF was higher, which was due to high stress at the contact region and the occurrence of delamination wear. Then the COF was collapsed as a result of pin penetration and decreased stress at the contact region. The intensity of delamination is decreased at the later stage. The wear resistance of multilayer coatings is increased with increasing frequency and decreasing duty cycles as a consequence of grain refinement and hardness enhancement.  相似文献   

17.
J. D. Bressan  R. Hesse  E. M. Silva  Jr.   《Wear》2001,250(1-12):561-568
The wear behavior of M2 high speed HSS steel and WC hard metal coated with TiAlN and TiCN were investigated and compared, using the pin on disk standard test with different loads. The coating PVD process has been done by two different suppliers, using an industrial equipment unit with optimized conditions. The coated layers were measured and characterized. The load, sliding distance and velocity of 0.5 m/s were kept constant during the abrasion test in order to control these variables. The counterface disks used were electric steel sheets from three different suppliers. The lost volume and temperature at the pin end have been measured during the wear test. Comparisons of tribological performance for the coated HSS and hard metal were done, using a plot of lost volume versus sliding distance for substrates and coatings. The pin worn surfaces were observed using a scanning electron microscope. A significant increase in the wear resistance of M2 steel and WC hard metal when coated with TiAlN and TiCN was observed. Quality of these coatings depended upon the supplier. Excessive porosity has diminished the TiAlN counting wear resistance from one supplier. However, in general the performance of TiAlN is superior to TiCN. The pin wear rate depended on the disk microstructure.  相似文献   

18.
《Wear》2002,252(7-8):557-565
In this paper, a physical vapour deposited (PVD) deposited TiB2 coating is compared in dry sliding with commercial PVD titanium nitride (TiN), titanium aluminium nitride (TiAlN) and titanium carbonitirde (TiCN) as to frictional properties and tendency of counter material pick-up. The aim is to investigate if the superior behaviour of the TiB2 coating experienced in severe sliding applications against aluminium alloys can be extended to other materials with a similarly poor tribological characteristics.A new tribological test for sliding contact has been used. The test configuration involves two crossed elongated cylindrical test specimens which are forced to slide axially against each other at a constant sliding speed and a gradually increasing normal load, while recording the friction. The evaluation is performed by correlating the friction history with the width, topography and composition of the sliding tracks as detected by optical and scanning electron microscopy.Coated cemented carbide (CC) test cylinders have been slid against cylinders of a Ti alloy (Ti–6Al–4V), an Al alloy (Al 7075) and Inconel 718. It was shown that the TiB2 surface displayed superior friction and anti-sticking properties, when tested against the aluminium alloy. Against the Ti and Inconel alloys no major difference between the coatings could be found. Instead, it is concluded that the friction coefficient is determined by the plastic properties of the counter material since a complete transfer layer instantly builds up on the coating.It proved possible to estimate the friction force from the width of the sliding tracks, the Vickers hardness of the counter material and simple plastic considerations. This estimation also verifies the unexpectedly low friction of all coatings against the Ti alloy.  相似文献   

19.
Binshi Xu  Zixin Zhu  Wei Zhang 《Wear》2004,257(11):1089-1095
A comparative study was carried out to investigate the microstructure and tribological behavior of Fe-Al and Fe-Al/WC iron aluminide based coatings against Si3N4 under dry sliding at room temperature using a pin-on-disc tribotester. The coatings were prepared by high velocity arc spraying (HVAS) and cored wires. The effect of normal load on friction coefficient and wear rate of the coatings was studied. The microstructure and the worn surfaces of the coatings were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscope (EDS). The results showed that, the main phases in both coatings were iron aluminide (Fe3Al and FeAl) and α. WC/W2C particles were embedded in the matrix of the composite coating. With adding WC hard particles, the Fe-Al/WC composite coating exhibited higher wear-resistance than Fe-Al coating. But the friction coefficient of both coatings showed little difference. As the load increased, the friction coefficient decreases slightly due to a rise of friction contact temperature and larger areas of oxide film formation on the worn surface, which act as a solid lubricant. Increasing load causes the maximum shear stress occurring at the deeper position below the surface, thereby aggravating the wear. The coating surface is subjected to alternately tensile stress and compression stress during sliding, and the predominant wear mechanism of the coatings appears to be delamination.  相似文献   

20.
This paper studies the friction and wear behaviour of two important bearing materials, Thordon XL and LgSn80, in dry and lubricated sliding vs. plasma-sprayed Cr2O3 coatings. As a reference, AISI 1043 steel is also studied under the same conditions. SEM, EDS and surface topography were employed to study the wear mechanisms. The results indicate that the Thordon XL/Cr2O3 coating pair gives the lowest dry friction coefficient (0.16) under a normal load of 45.3 N (pressure 0.453 MPa) at a velocity of 1 m/s. The dry friction coefficient of Thordon XL/Cr2O3 coating increases to 0.38 under a normal load of 88.5 N (pressure 0.885 MPa). The dry friction coefficients of the LgSn80/Cr2O3 coating are in the range of 0.31–0.46. Secondly, both dry wear rate under low normal load (45.3 N) and lubricated wear rate under a load of 680 N for Thordon XL are lower than those of LgSn80 in sliding against plasma-sprayed Cr2O3 coatings at a speed of 1 m/s. However, under a normal load of 88.5 N the dry wear rate of Thordon XL is much higher than that of LgSn80. Thirdly, a high viscosity lubricant (SAE 140) leads to lower wear for Thordon XL and LgSn80 than a low viscosity lubricant (SAE 30). Finally, the dominating wear mechanism for Thordon XL is shear fracture when against the plasma-sprayed Cr2O3 ceramic coating. For LgSn80 against plasma-sprayed Cr2O3 ceramic coating, abrasive wear is the governing failure mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号