首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
煤焦-CO_2高温气化反应特性的实验研究   总被引:1,自引:1,他引:0  
利用STA409PC综合热分析仪以等温法研究煤焦-CO2高温气化反应,考察了煤种、气化温度及气流速度对煤焦气化反应的影响,并对其动力学参数进行了求算.实验结果表明:当气化温度低于煤焦灰熔点温度时,煤焦的碳转化率和反应速率峰值随气化温度的升高而增大,当气化温度高于煤焦的灰熔点温度时,煤焦的碳转化率和反应速率变化十分缓慢,甚至有下降的趋势;不同煤种的气化反应动力学参数有很大的差异,鞍钢煤焦和本钢煤焦的活化能均为140kJ/mol,阜新煤焦的活化能为70kJ/mol.当煤焦的气化反应温度高于煤焦的灰熔点温度时,扩散成为煤焦气化反应的主要限制环节,提高气流速度有利于煤焦气化反应的进行.  相似文献   

2.
利用STA409PC综合热分析仪以程序升温法来研究煤焦-CO2气化反应,主要考察了高温下升温速率对煤焦气化反应性的影响,并用Ozawa法和单一升温速率法对其动力学参数进行了求算.实验结果表明:升温速率对煤焦气化反应有明显影响,升温速率越大,相同时间内,煤焦的碳转化率越高,但是其升温速率存在一上限值,而且这一上限值随煤种的不同而不同;随升温速率的增大,DTG曲线向高温方向移动,峰值温度和最大反应速率也随之增大;利用Ozawa法求得的鞍钢煤焦和本钢煤焦的活化能均在110 kJ/mol左右,阜新煤焦的活化能为87 kJ/mol.  相似文献   

3.
采用热重分析仪研究了云南玉溪煤和新疆准东煤的加氢热解煤焦二氧化碳气化反应性,考察了成焦压力、停留时间及气氛对煤焦气化反应性的影响,并利用均相模型计算了各煤焦的非等温气化动力学参数。采用实验室固定床反应器,研究了上述两种煤加氢热解煤焦的水蒸气气化特性,考察了成焦气氛对煤焦气化速率和气体产物组成的影响。热重气化实验表明,准东煤焦的气化反应性明显好于玉溪煤焦,前者的反应活化能远小于后者的反应活化能;无论哪种煤,加氢热解煤焦的气化反应性随加氢过程碳转化率的增大呈下降趋势;在相近的碳转化率下,加氢热解煤焦的气化反应性明显好于氮气气氛热解所得煤焦。在水蒸气气化的情况下,准东煤焦的气化反应性同样好于玉溪煤焦。总体上准东加氢热解煤焦的产氢率相比氮气气氛热解所得煤焦有所增加,不过对于这两种煤焦,随着气化温度提高,H2与CO的物质的量之比均逐渐接近于热力学平衡所得的计算值。  相似文献   

4.
低灰熔点煤的高温气化反应性能   总被引:7,自引:0,他引:7  
在常压、温度为800~1400℃范围内,以二氧化碳为气化剂,研究了我国神府、后布连、东胜3种煤焦的高温气化反应特性。结果表明:气化反应速率与温度的关系可以分成3个区域,低温区为反应动力学控制区,反应速率符合Arrhenius方程;中温区为内扩散严重影响区,其表观活化能约为反应动力学控制区活化能的一半;而在气化温度高于1150℃的高温区,同一温度下随碳转化率的提高气化速率的差异逐渐加大,活化能下降,反应速率随气化温度的增加反而降低。  相似文献   

5.
在固定床加压反应器和加压热天平上,对五种中国气化用煤及其煤焦进行了加氢气化的动力学研究。发现在升温过程中各类产品气体的生成速率都随温度而变化,甲烷和乙烷的生成速率在600℃左右可达到最大值。沈北、蔚县煤焦在850~1000℃,2.1 MPa下加氢反应的表观活化能分别为108和95kJ/mol。随着煤焦制备温度的提高,煤焦加氢反应的平均比气化速率和最终转化率都下降。  相似文献   

6.
将3种不同变质程度煤于1173K下制成煤焦,在PBBR装置上于1073~1223K温度和0.29~2.47MPa下进行煤焦Boudouard反应试验。提高反应温度和压力均能使煤焦的基碳转化率和平均比气化速率增大,且显示温度的影响大于压力。随着原煤变质程度加深,其煤焦的气化活性减小。未反应芯表面反应模型能较好描述此气化过程,并可计算出反应动力学参数。活化能,频率因子和反应级数。用Na_2CO_3和K_2CO_3作催化剂能明显加速官地煤焦与CO_2气化反应速率,并显著降低其反应活化能,且K_2CO_3的催化效果大于Na_2CO_3。  相似文献   

7.
程序升温热重法研究神府高温煤焦-CO2气化反应性   总被引:1,自引:0,他引:1  
在制焦温度为1223~1773 K内,制备了慢速和快速神府煤焦,采用程序升温热重法研究了煤焦-CO2高温气化反应性。主要研究了升温速率、制焦温度和热解速率对煤焦反应性的影响,并对一种高温慢速热解焦(制焦温度为1573 K)的程序升温和等温动力学进行了比较。结果表明:升温速率对煤焦-CO2气化反应有明显影响;制焦温度较高的煤焦反应性较低;快速热解有利于提高煤焦的反应性;由程序升温法和等温法所得活化能随转化率变化呈现不同的趋势,但所得活化能的平均值分别为160.13 kJ/mol和163.21 kJ/mol,十分接近。  相似文献   

8.
利用常压和加压热重的方法研究了我国典型煤种加压热解焦的CO_2气化反应特性和反应动力学,并引入分数维收缩核模型探讨反应级数与煤焦的表面结构特性的关系.实验结果表明:不同煤焦的CO_2气化反应速率的大小关系为小龙潭褐煤>神府烟煤坪寨无烟煤>合山贫煤.与常压热解煤焦的气化反应对比发现:加压热解降低了煤焦的反应性(高灰分的合山贫煤除外),加压热解煤焦的气化反应速率的峰位提前,同时起始气化反应速率减小.煤焦CO_2气化反应级数、速率常数与煤焦的表面结构特性及灰分密切相关.理论分析和实验均证明:煤焦比表面积越大,对应的CO_2气化反应级数也越大.  相似文献   

9.
加压下煤焦与二氧化碳反应的动力学研究   总被引:1,自引:0,他引:1  
本文用试制成的加压热天平,测定了八种中国煤在900℃时制成的煤焦在1.2-31 at.和800-1050℃与CO_2反应的活性。结果表明活性同煤品位有很好的相关性,年轻煤的活性大于年老煤。研究了活性随热处理温度(800—1100℃)的变化。在同一气化温度,活性有规则地随制备温度的降低而增加,在同一热处理温度时,活性随气化温度的增加而增加。计算了表观活化能和制备活化能。由1.2—31 at.850—900℃一种褐煤焦在CO—CO_2混合物中气化得到的结果,关联成下列模型: W=K_1Pco_2/1 K_2Pco K_3Pco_2也讨论了比气化速率和炭转化率的关系。  相似文献   

10.
以褐煤等粉煤为原料,采用冷压成型和低温炭化工艺,研制出高热稳定性的气化用炭化型煤。在固定床气化装置中,研究了炭化型煤的水蒸气气化特性和动力学。研究表明,气化温度从880℃提高到1 000℃,碳转化率达到85%的时间从40~50min缩短至20min以内;反应进行5~8min时,炭化型煤气化反应速率达到最大值;气化温度为880℃时,反应全程处在化学反应控制区;气化温度为920℃、960℃和1 000℃时,反应过程由化学控制区向内扩散控制区转移,转移的拐点在碳转化率为90%~95%之间出现。炭化型煤气化动力学可用二维扩散模式的缩核模型描述,在化学反应控制区,表观活化能为93.83~104.11kJ/mol,表观活化能与指前因子存在动力学补偿效应;在内扩散控制区,表观活化能为76.45~87.05kJ/mol。  相似文献   

11.
By using thermogravimetric analysis the process and mechanism of iron ore reduced by biomass char were investigated and compared with those reduced by coal and coke. It is found that biomass char has a higher reactivity. The increase of carbon-to-oxygen mole ratio (C/O) can lead to the enhancement of reaction rate and reduction fraction, but cannot change the temperature and trend of each reaction. The reaction temperature of hematite reduced by biomass char is at least 100 K lower than that reduced by coal and coke, the maximum reaction rate is 1.57 times as high as that of coal, and the final reaction fraction is much higher. Model calculation indicates that the use of burden composed of biomass char and iron ore for blast furnaces can probably decrease the temperature of the thermal reserve zone and reduce the CO equilibrium concentration.  相似文献   

12.
采用XRF、XRD和SEM/EDS等分析手段对神华煤气化灰渣的理化性质进行了表征,并考察了气化灰渣对金山石油焦/CO2气化反应活性的影响。结果表明:炉底灰渣和炉顶飞灰的灰分质量分数分别为78.39%和62.71%;炉底灰渣中Ca和Fe的质量分数较炉顶飞灰高,而炉顶飞灰中Si和Al的质量分数则比炉底灰渣高;气化灰渣中的矿物质主要以对气化反应无催化活性的惰性物质形态存在,炉底灰渣中对含碳物料气化反应有催化作用的主要是少量的硫酸钙、氧化铁和钾芒硝(K3Na(SO4)2),而炉顶飞灰中则是少量的硫酸钙;随着气化灰渣添加量的增加,石油焦催化气化反应速率达到最大值时所对应的转化率逐渐减小。当气化灰渣的添加量为5%~30%时,石油焦的气化活性提高了2~7倍,其中炉底灰渣的催化活性稍优于炉顶飞灰。  相似文献   

13.
通过在模拟高炉温度和煤气成分变化的条下,对我国重点钢铁厂铁矿石还原及焦炭气化的藕合反应研究,阐明了焦炭气化与铁矿石还原与反应历程有关。分析预测高炉冶炼效果除考虑恒定温度和恒定煤气成分下焦炭与铁矿石冶金性能外,还应考虑焦炭与铁矿石藕合反应过程CO过剩量。研究表明宝钢、首钢、本钢、鞍钢CO过剩系数ηc较小,煤气利用好;包钢、重钢和梅山冶金公司ηco较大,煤气利用较差。  相似文献   

14.
研究高灰熔点煤气化特性,以水煤浆为气化原料,在沉降炉内进行了我国典型高灰熔点煤老矿中煤气化反应的实验研究.考察了气化温度和O/C摩尔比对合成气组分、碳转化率和冷煤气效率的影响.结果表明,在相同O/C摩尔比条件下,有效合成气体积分数、碳转化率及冷煤气效率随气化温度的升高而升高.在气化温度相同的条件下,随着O/C摩尔比的增加,CO2的体积分数和碳转化率随之增大,而冷煤气效率呈现出先增大后减小的趋势.在实验条件下,老矿中煤的最佳O/C摩尔比为0.90~1.05.  相似文献   

15.
利用热重分析法研究了硅铁、硼砂、碳酸钠三种不同添加剂对钛精矿固相碳热还原行为的影响.对这三种添加剂的TG,DTG,DSC曲线进行分析,结果表明硅铁会使钛精矿在还原过程中的失重率减少;而碳酸钠和硼砂会使钛精矿在还原过程中的失重率增加.三种添加剂都可以使达到最大反应速率时的温度降低.碳酸钠和硼砂可以显著提高其最大反应速率,分别提高了013%/min和018%/min;硅铁使最大反应速率降低.其强化还原机理为硅铁为反应提供一定热量,提高了反应体系的温度;硼砂促进还原过程中反应物的传输;碳酸钠可以增强碳的气化反应.  相似文献   

16.
针对电弧炉操作参数的选取与控制,建立了一个物料、钛渣、铁水三相传输与反应过程的三维多物理场模型.基于有限体积法,求解模型方程,结果表明:焦耳热、温度场和电压压降都主要集中在熔池表面接近电极的区域,表现出多物理场的强耦合性和不均匀性;熔池沿横向的扩张随着时间的推移而明显减缓,直至稳定在炉壁附近,形成挂渣层;料层内钛精矿和焦炭的质量分数影响还原反应发生的位置,使之不断向炉膛入料口移动;电炉入料量与反应速率拥有相似的变化趋势,当炉况趋于稳定时,钛渣生成速率为2.4kg·s-1,铁水生成速率为1.5kg·s-1,主料口、副料口和炉心料口的质量流量之比为20∶22∶9.  相似文献   

17.
根据相似原理,对高炉滴落带初渣流动进行了区域模拟的实验研究。结果表明:在现代高炉操作条件下,初渣偏流现象是不可避免的;初渣在滴落带横截面上呈二次项分布。在正常操作条件下,铁液的滴落几乎不受横向气流的作用,因而,生铁一经生成便与初渣分离而垂直下滴,而初渣则主要集中在软熔带内边缘附近区域流动。初渣偏流影响到焦窗的透气性。提高焦炭强度,保证滴落带焦炭柱中大于20mm 的大顺粒组成高于80%,或对小颗粒焦炭进行分级整粒入炉,将减轻滴落带初渣偏流,改善高炉下部的透气性和透液性。  相似文献   

18.
To more comprehensively analyze the effect of CO2 and H2O on the gasification dissolution reaction and deep reaction of coke, the reactions of coke with CO2 and H2O using high temperature gas-solid reaction apparatus over the range of 950-1250℃ were studied, and the thermodynamic and kinetic analyses were also performed. The results show that the average reaction rate of coke with H2O is about 1.3-6.5 times that with CO2 in the experimental temperature range. At the same temperature, the endothermic effect of coke with H2O is less than that with CO2. As the pressure increases, the gasification dissolution reaction of coke shifts to the high-temperature zone. The use of hydrogen-rich fuels is conducive to decreasing the energy consumed inside the blast furnace, and a corresponding high-pressure operation will help to suppress the gasification dissolution reaction of coke and reduce its deterioration. The interfacial chemical reaction is the main rate-limiting step over the experimental temperature range. The activation energies of the reaction of coke with CO2 and H2O are 169.23 kJ·mol-1 and 87.13 kJ·mol-1, respectively. Additionally, water vapor is more likely to diffuse into the coke interior at a lower temperature and thus aggravates the deterioration of coke in the middle upper part of blast furnace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号