首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The two-phase heat transfer coefficient and pressure drop of pure HFC-134a condensing inside a smooth helically coiled concentric tube-in-tube heat exchanger are experimentally investigated. The test section is a 5.786 m long helically coiled double tube with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from smooth copper tubing of 9.52 mm outer diameter and 8.3 mm inner diameter. The outer tube is made from smooth copper tubing of 23.2 mm outer diameter and 21.2 mm inner diameter. The heat exchanger is fabricated by bending a straight copper double-concentric tube into a helical coil of six turns. The diameter of coil is 305 mm. The pitch of coil is 35 mm. The test runs are done at average saturation condensing temperatures ranging between 40 and 50 °C. The mass fluxes are between 400 and 800 kg m−2 s−1 and the heat fluxes are between 5 and 10 kW m−2. The pressure drop across the test section is directly measured by a differential pressure transducer. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The average heat transfer coefficient of the refrigerant is determined by applying an energy balance based on the energy rejected from the test section. The effects of heat flux, mass flux and, condensation temperature on the heat transfer coefficients and pressure drop are also discussed. It is found that the percentage increase of the average heat transfer coefficient and the pressure drop of the helically coiled concentric tube-in-tube heat exchanger, compared with that of the straight tube-in-tube heat exchanger, are in the range of 33–53% and 29–46%, respectively. New correlations for the condensation heat transfer coefficient and pressure drop are proposed for practical applications.  相似文献   

2.
Experiments of diabatic two-phase pressure drops in flow boiling were conducted in four horizontal flattened smooth copper tubes with two different heights of 2 and 3 mm. The equivalent diameters of the flat tubes are 8.6, 7.17, 6.25, and 5.3 mm. The working fluids are R22 and R410A, respectively. The test conditions are: mass velocities from 150 to 500 kg/m2 s, heat fluxes from 6 to 40 kW/m2 and saturation temperature of 5 °C (reduced pressures pr are 0.12 for R22 and 0.19 for R410A). The experimental results of two-phase pressure drops are presented and analyzed. Furthermore, the predicted two-phase frictional pressure drops by the flow pattern based two-phase pressure drop model of Moreno Quibén and Thome [J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part I: Diabatic and adiabatic experimental study, Int. J. Heat Fluid Flow 28 (2007) 1049–1059; J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part II: New phenomenological model, Int. J. Heat Fluid Flow 28 (2007) 1060–1072] using the equivalent diameters were compared to the experimental data. The model, however, underpredicts the flattened tube two-phase frictional pressure drop data. Therefore, correction to the annular flow friction factor was proposed for the flattened tubes and now the method predicts 83.7% of the flattened tube pressure drop data within ±30%. The model is applicable to the flattened tubes in the test condition range in the present study. Extension of the model to other conditions should be verified with experimental data.  相似文献   

3.
Condensation heat transfer and pressure drop of R22, R410A and R407C were investigated experimentally in two single round stainless steel tubes with inner diameter of 1.088 mm and 1.289 mm. Condensation heat transfer coefficients and two phase pressure drop were measured at the saturation temperatures of 30 °C and 40 °C. The mass flux varies from 300 to 600 kg/m2 s and the vapor quality 0.1–0.9. The effects of mass flux and vapor quality were investigated and the results indicate that condensation heat transfer coefficients increase with mass flux and vapor quality, increasing faster in the high vapor quality region. The experimental data was compared with the correlations based on experimental data from large diameter tubes (dh > 3 mm), such as the Shah and Akers correlations et al. Almost all the correlations overestimated the present experimental data, but Wang correlation and Yan and Lin correlation which were developed based on the experimental data from mini-tubes predicted present data reasonably well. Condensation heat transfer coefficients and two phase pressure drop of R22 and R407C are equivalent but both higher than those of R410A. As a substitute for R22, R410A has more advantages than R407C in view of the characteristics of condensation heat transfer and pressure drop.  相似文献   

4.
Boiling heat transfer characteristics of nitrogen were experimentally investigated in a stainless steel plain tube and wire coil inserted tubes. Wire coils having different coil pitches and wire thicknesses were inserted into a horizontally positioned plain tube, which had an inner diameter of 10.6 mm and a length of 1.65 m. The coil pitches were 18.4, 27.6, and 36.8 mm, and the wire thicknesses were 1.5, 2.0, and 2.5 mm. Tests were conducted at a saturation temperature of −191 °C, mass fluxes from 58 to 105 kg/m2 s, and heat fluxes from 22.5 to 32.7 kW/m2. A direct heating method was used to apply heat to the test tube. The boiling heat transfer coefficients of nitrogen significantly decreased when the dryout occurred. Enhancement performance ratio (EPR), which is the ratio of heat transfer enhancement factor to pressure drop ratio, was used to evaluate the performance of the wire coil inserts. The maximum heat transfer enhancement of the wire coil inserted tubes over the plain tube was 174% with wire 3 having a twist ratio (p/Dw) of 1.84 and a thickness ratio (t/Dw) of 0.25. Wire 3-inserted tube showed the highest EPR among the tested tubes in this study.  相似文献   

5.
《Applied Thermal Engineering》2007,27(16):2713-2726
Enhanced heat transfer surfaces are used in heat exchangers to improve performance and to decrease system volume and cost. In-tube heat transfer enhancement usually takes the form of either micro-fin tubes (of the helical micro-fin or herringbone varieties), or of helical wire inserts. Despite a substantial increase in heat transfer, these devices also cause non-negligible pressure drops.By making use of well-proven flow pattern maps for smooth tubes and the new ones for smooth and enhanced tubes, it is shown from the refrigerant condensation data that flow patterns have a strong influence on heat transfer and pressure drop. This is done for data obtained from in-tube condensation experiments for mass fluxes ranging from 300 to 800 kg/m2 s at a saturation temperature of 40 °C, for refrigerants R-22, R-134a, and R-407C. The flow regimes, pressure drops, heat transfer coefficients, and the overall performance of three different tubes, namely a smooth-, 18° helical micro-fin-, and a herringbone micro-fin tube (each having a nominal diameter of 9.51 mm), are presented and compared to the performance of smooth tubes with helical wire inserts (with pitches of 5 mm, 7.77 mm and 11 mm corresponding to helical angles of 78.2°, 72°, and 65.3°, respectively).  相似文献   

6.
The boiling heat transfer of refrigerant R-134a flow in horizontal small-diameter tubes with inner diameter of 0.51, 1.12, and 3.1 mm was experimentally investigated. Local heat transfer coefficient and pressure drop were measured for a heat flux ranging from 5 to 39 kW/m2, mass flux from 150 to 450 kg/m2 s, evaporating temperature from 278.15 to 288.15 K, and inlet vapor quality from 0 to 0.2. Flow patterns were observed by using a high-speed video camera through a sight glass at the entrance of an evaporator. Results showed that with decreasing tube diameter, the local heat transfer coefficient starts decreasing at lower vapor quality. Although the effect of mass flux on the local heat transfer coefficient decreased with decreasing tube diameter, the effect of heat flux was strong in all three tubes. The measured pressure drop for the 3.1-mm-ID tube agreed well with that predicted by the Lockhart–Martinelli correlation, but when the inner tube diameter was 0.51 mm, the measured pressure drop agreed well with that predicted by the homogenous pressure drop model. With decreasing tube diameter, the flow inside a tube approached homogeneous flow. The contribution of forced convective evaporation to the boiling heat transfer decreases with decreasing the inner tube diameter.  相似文献   

7.
This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of ¼, ½, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 °C. For mass velocities higher than 200 kg/m2s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m2s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%.  相似文献   

8.
Experimental investigations of tube side condensation and evaporation in two 3-D enhanced heat transfer (2EHT) tubes were compared to the performance of a smooth surface copper tube. The equivalent outer diameter of all the tubes was 12.7 mm with an inner diameter of 11.5 mm. Both the inner and outer surfaces of the 2EHT tubes are enhanced by longitudinal grooves with a background pattern made up by an array of dimples/embossments. Experimental runs were performed using R410A as the working fluid, over the quality range of 0.2–0.9. For evaporation, the heat transfer coefficient ratio (compares the heat transfer coefficient of the enhanced tube to that of a smooth tube) of the 2EHT tubes is 1.11–1.43 (with an enhanced surface area ratio of 1.03) for mass flux rate that ranges from 80 to 200 kg/m2 s. For condensation, the heat transfer coefficient ratio range is 1.1–1.16 (with an enhanced surface area ratio of 1.03) for mass flux that ranges from 80 to 260 kg/m2 s. Frictional pressure drop values for the 2EHT tubes are very similar to each other. Heat transfer enhancement in the 2EHT tubes is mainly due to the dimples and grooves in the inner surface that create an increased surface area and interfacial turbulence; producing higher heat flux from wall to working fluid, flow separation, and secondary flows. A comparison was performed to evaluate the enhancement effect of the 2EHT tubes using a defined performance factor and this indicates that the 2EHT tubes provides a better heat transfer coefficient under evaporation conditions.  相似文献   

9.
A complete solution for boiling phenomena in smooth tubes has been giving as a procedure regarding with the calculation of convective heat transfer coefficient and pressure drop using accurate experimental data validated by flow regime maps and sight glasses on the experimental facility. The experimental study is conducted in order to investigate the effect of operating parameters on flow boiling convective heat transfer coefficient and pressure drop of R134a. The smooth tube having 8.62 mm inner diameter and 1100 mm length is used in the experiments. The effect of mass flux, saturation temperature and heat flux is researched in the range of 290–381 kg/m2 s, 15–22 °C and 10–15 kW/m2, respectively. The experiments revealed that the heat transfer coefficient and pressure drop are significantly affected by mass flux for all tested conditions. Moreover, the experimental results are compared with well-known heat transfer coefficient and frictional pressure drop correlations given in the literature. In addition, 122 number of heat transfer and pressure drop raw experimental data is given for researchers to validate their theoretical models.  相似文献   

10.
The two-phase heat transfer coefficient and pressure drop of HFC-134a during evaporation inside a smooth helically coiled concentric tube-in-tube heat exchanger are experimentally investigated. The test section is a 5.786-m long helically coiled tube with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tube is made from copper tubing of 9.52 mm outer diameter and 7.2 mm inner diameter. The heat exchanger is fabricated by bending a straight copper tube into a spiral coil. The diameter of coil is 305 mm. The test run are done at average saturated evaporating temperatures ranging between 10 and 20 °C. The mass fluxes are between 400 and 800 kg m−2 s−1 and the heat fluxes are between 5 and 10 kW m−2. The inlet quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is directly measured by a differential pressure transducer. The effects of heat flux, mass flux and, evaporation temperature on the heat transfer coefficients and pressure drop are also discussed. The results from the present experiment are compared with those obtained from the straight tube reported in the literature. New correlations for the convection heat transfer coefficient and pressure drop are proposed for practical applications.  相似文献   

11.
Experiments of flow boiling heat transfer were conducted in four horizontal flattened smooth copper tubes of two different heights of 2 and 3 mm. The equivalent diameters of the flattened tubes are 8.6, 7.17, 6.25, and 5.3 mm. The working fluids were R22 and R410A. The test conditions were: mass velocities from 150 to 500 kg/m2 s, heat fluxes from 6 to 40 kW/m2 and saturation temperature of 5 °C. The experimental heat transfer results are presented and the effects of mass flux, heat flux, and tube diameter on heat transfer are analyzed. Furthermore, the flow pattern based flow boiling heat transfer model of Wojtan et al. [L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part I – A new diabatic two-phase flow pattern map, Int. J. Heat Mass Transfer 48 (2005) 2955–2969; L. Wojtan, T. Ursenbacker, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part II – Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes, Int. J. Heat Mass Transfer 48 (2005) 2970–2985], using the equivalent diameters, were compared to the experimental data. The model predicts 71% of the entire database of R22 and R410A ±30% overall. The model predicts well the flattened tube heat transfer coefficients for R22 while it does not predicts well those for R410A. Based on several physical considerations, a modified flow boiling heat transfer model was proposed for the flattened tubes on the basis of the Wojtan et al. model and it predicts the flattened tube heat transfer database of R22 and R410A by 85.8% within ±30%. The modified model is applied to the reduced pressures up to 0.19.  相似文献   

12.
An experimental investigation of electrohydrodynamic (EHD) augmentation of heat transfer for in-tube condensation of flowing refrigerant HFC-134a has been performed in a horizontal, single-pass, counter-current heat exchanger with a rod electrode placed in the centre of the tube. The effects of varying the mass flux (55 kg/m2 s  G  263 kg/m2 s), inlet quality (0.2  xin  0.83) and the level of applied voltage (0 kV  V  8 kV) are examined. The heat transfer coefficient was enhanced by a factor up to 3.2 times for applied voltage of 8 kV. The pressure drop was increased by a factor 1.5 at the same conditions of the maximum heat transfer enhancement. The improved heat transfer performance and pressure drop penalty are due to flow regime transition from stratified flow to annular flow as has been deduced from the surface temperature profiles along the top and bottom surfaces of the tube.  相似文献   

13.
In the present paper, in order to understand the accuracy of 38 different correlations derived by various researchers in this field, the correlations were executed for condensation frictional pressure drop. To accomplish this goal, experimental data provided from authors' previous publications encompassing 412 points for two smooth tubes, and 334 points for five corrugated tubes, have been utilized so as to compare the determined results. The experimental setup is composed of a 2.5 m double tube for horizontal configuration and smooth and corrugated tubes at the inner diameters of 0.0081 m, while the applied mass flux range spans between 709 and 1974 kg m 2 s 1. The average quality of vapor and saturation pressure ranges lie within 0.09 to 0.97, and 10 to 13 bar, respectively. Determining the frictional pressure drop in two-phase flows does not involve corrugated tube geometry in the calculation of friction factor, to make this available, a slight alteration that requires the replacement of a correlation with another one in the literature was suggested with regard to friction factor approach. As a result of this, it was noticed that performances of some correlations were optimized to predict the frictional pressure drop in corrugated tubes. Additionally, the most effective correlations have been selected for the horizontal double pipe heat exchanger having smooth and corrugated tubes. Finally, alteration of the condensation pressure drop with Reynolds number are presented using both experimental data and best predictive correlations.  相似文献   

14.
This article presents the condensation heat transfer and flow characteristics of R-134a flowing through corrugated tubes experimentally. The test section is a horizontal counter-flow concentric tube-in-tube heat exchanger 2000 mm in length. A smooth copper tube and corrugated copper tubes having inner diameters of 8.7 mm are used as an inner tube. The outer tube is made from smooth copper tube having an inner diameter of 21.2 mm. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm, respectively. The test conditions are performed at saturation temperatures of 40–50 °C, heat fluxes of 5–10 kW/m2, mass fluxes of 200–700 kg/m2 s, and equivalent Reynolds numbers of 30000–120000. The Nusselt number and two-phase friction factor obtained from the corrugated tubes are significantly higher than those obtained from the smooth tube. Finally, new correlations are developed based on the present experimental data for predicting the Nusselt number and two-phase friction factor for corrugated tubes.  相似文献   

15.
This paper presents the heat transfer coefficients and the pressure drop measured during HFC refrigerants 236fa, 134a and 410A saturated vapour condensation inside a brazed plate heat exchanger: the effects of saturation temperature (pressure), refrigerant mass flux and fluid properties are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature (pressure) and great sensitivity to refrigerant mass flux and fluid properties. A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 20 kg/m2s that corresponds to an equivalent Reynolds number around 1600–1700. At low refrigerant mass flux (Gr < 20 kg/m2s) the heat transfer coefficients are not dependent on mass flux and are well predicted by the Nusselt [20] analysis for vertical surface: the condensation process is gravity controlled. For higher refrigerant mass flux (Gr > 20 kg/m2s) the heat transfer coefficients depend on mass flux and are well predicted by Akers et al. [21] equation: forced convection condensation occurs. In the forced convection condensation region the heat transfer coefficients show a 25–30% increase for a doubling of the refrigerant mass flux.The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow and therefore a quadratic dependence on mass flux.HFC-410A shows heat transfer coefficients similar to HFC-134a and 10% higher than HFC-236fa together with frictional pressure drops 40-50% lower than HFC-134a and 50–60% lower than HFC-236fa.  相似文献   

16.
This study examines the airside performance of the wavy fin-and-tube heat exchangers having a larger diameter tube (Dc = 16.59 mm) with the tube row ranging from 1 to 16. It is found that the effect of tube row on the heat transfer performance is quite significant, and the heat transfer performance deteriorates with the rise of tube row. The performance drop is especially pronounced at the low Reynolds number region. Actually more than 85% drop of heat transfer performance is seen for Fp  1.7 mm as the row number is increased from 1 to 16. Upon the influence of tube row on the frictional performance, an unexpected row dependence of the friction factor is encountered. The effect of fin pitch on the airside performance is comparatively small for N = 1 or N = 2. However, a notable drop of heat transfer performance is seen when the number of tube row is increased, and normally higher heat transfer and frictional performance is associated with that of the larger fin pitch.  相似文献   

17.
This study investigates heat transfer and flow characteristics of water flowing through horizontal internally grooved tubes. The test tubes consisted of one smooth tube, one straight grooved tube, and four grooved tubes with different pitches. All test tubes were made from type 304 stainless steel. The length and inner diameter of the test tube were 2 m and 7.1 mm, respectively. Water was used as working fluid, heated by DC power supply under constant heat flux condition. The test runs were performed at average fluid temperature of 25 °C, heat flux of 3.5 kW/m2, and Reynolds number range from 4000 to 10,000. The effect of grooved pitch on heat transfer and pressure drop was also investigated. The performance of the grooved tubes was discussed in terms of thermal enhancement factor. The results showed that the thermal enhancement factor obtained from groove tubes is about 1.4 to 2.2 for a pitch of 0.5 in.; 1.1 to 1.3 for pitches of 8, 10, and 12 in., respectively; and 0.8 to 0.9 for a straight groove.  相似文献   

18.
The effect of pulsed electric fields on two-phase flow patterns, heat transfer and pressure drop in horizontal tube side convective condensation was investigated. Experiments were performed for an applied pulse voltage of 8 kV at pulse repetition rates in the range of 0.5 Hz–1.5 kHz and duty cycles of 25%, 50% and 75%. Three mass fluxes of 55, 100, and 150 kg/m2 s were tested with an average vapour quality of 45% which corresponds to an initially stratified flow. The voltage was applied through a central electrode along the centerline of the tube. Changing the pulse repetition rate and duty cycle results in different flow patterns and therefore in different values of heat transfer and pressure drop. For a given mass flux, the heat transfer enhancement due to the applied voltage decreased with the pulse repetition rate and reached a plateau. The pressure drop ratio, however, increased with pulse repetition rate and reached a maximum before decreasing with a further increase in pulse repetition rate.  相似文献   

19.
The turbulent heat transfer and flow resistance in an enhanced heat transfer tube, the DDIR tube, were studied experimentally and numerically. Water was used as the working fluid with Reynolds numbers between 15,000 and 60,000. The numerical simulations solved the three dimensional Reynolds-averaged Navier–Stokes equations with the standard k-ε model in the commercial CFD code, Fluent. The numerical results agree well with the experimental data, with the largest discrepancy of 10% for the Nusselt numbers and 15% for the friction factors. The heat transfer in the DDIR tube is enhanced 100  120% compared with a plain tube and the pressure drop is increased 170  250%. The heat transfer rate for the same pumping power is enhanced 30  50%. Visualization of the flow field shows that in addition to the front and rear vortices around the ribs, main vortices and induced vortices are also generated by the ribs in the DDIR tube. The rear vortex and the main vortex contribute much to the heat transfer enhancement in the DDIR tubes. Optimum DDIR tube parameters are proposed for heat transfer enhancement at the same pumping power.  相似文献   

20.
Numerical and experimental analyses were carried out to study thermal–hydraulic characteristics of air flow inside a circular tube with different tube inserts. Three kinds of tube inserts, including longitudinal strip inserts (both with and without holes) and twisted-tape inserts with three different twisted angles (α = 15.3°, 24.4° and 34.3°) have been investigated for different inlet frontal velocity ranging from 3 to 18 m/s. Numerical simulation was performed by a 3D turbulence analysis of the heat transfer and fluid flow. Conjugate convective heat transfer in the flow field and heat conduction in the tube inserts are considered also. The experiments were conducted in a shell and tube exchanger with overall counterflow arrangement. The working fluid in the tube side was cold air, while the hot Dowtherm fluid was on the shell side. To obtain the heat transfer characteristics of the test section from the experimental data, the ε-NTU (effectiveness-number of transfer unit) method is applied to determine the overall conductance (UA product) in the analysis.It was found that the heat transfer coefficient and the pressure drop in the tubes with the longitudinal strip inserts (without hole) were 7–16% and 100–170% greater than those of plain tubes without inserts. When the longitudinal strip inserts with holes were used, the heat transfer coefficient and the pressure drop were 13–28% and 140–220%, respectively, higher than those of plain tubes. The heat transfer coefficient and the pressure drop of the tubes with twisted-tape inserts were 13–61% and 150–370%, respectively, higher than those of plain tubes. Furthermore, it was found that the reduction ratio in the heat transfer area of the tube of approximately 18–28% may be obtained if the twisted-tape tube inserts are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号