首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Norovirus (NV) gastroenteritis is a widespread disease affecting people of all ages worldwide. A simple, safe, and easily deliverable vaccine may be the key for the control and prevention of NV gastroenteritis. In this study, we demonstrated that a NV recombinant capsid protein (strain VA387, genogroup II.4) expressed in yeast (Pichia pastoris) spontaneously formed virus-like particles (VLPs) like those expressed in other in vitro systems. Oral administration of raw material from the yeast cell lysates containing 0.1 mg of VLPs without an adjuvant resulted in systemic and mucosal immune responses in mice. Significantly higher and earlier responses were observed in mice receiving a higher dose (1 mg per dose) of the antigen. Both the serum and fecal antibodies blocked VA387 VLP binding to its histo-blood group antigen receptors. The animals did not reveal any side effect following the administration of the yeast lysates. Our results indicated that yeast is a simple, effective alternative for NV VLP production. The mice immunization study also indicated that the oral administration of raw yeast extracts without an adjuvant is a safe and simple way which is worth to be studied for vaccine delivery in humans.  相似文献   

2.
Sapoviruses (SVs) are an important cause of acute pediatric gastroenteritis. Due to the lack of appropriate diagnostic methods, the epidemiology of SV-associated illness remains poorly understood. Baculovirus and Escherichia coli expression systems were evaluated for the development of antibody detection enzyme immunoassays (EIA). Age-related antibody prevalence in children was studied using the new EIA. Because of the low yield of the baculovirus system, the E. coli-expressed SV capsid proteins were used to develop the EIA. The antigenic specificities of the E. coli-expressed SV capsid proteins were demonstrated using hyperimmune antisera raised in animals and sera collected from patients. A high prevalence (>90%) of antibodies to both SV (strain Mex340) and norovirus (strain VA387) was observed in children involved in a birth cohort at 20 to 24 months of age; however, at 1 to 3 months of age, <25% of the children possessed anti-SV antibodies versus >90% with anti-NV antibodies. The E. coli-derived SV proteins are an excellent source of antigens for the EIA. SV infection is common in the first 2 years of life. The low prevalence of maternal antibodies detected in Mexican children against SVs in this study is unique and needs to be addressed in future studies.  相似文献   

3.
目的 了解SZ9711株P粒子与唾液组织血型抗原受体(HBGAs)的结合模式.方法 从诺如病毒SZ9711株基因组中克隆P区基因片段并构建pGEX-4T-1原核表达质粒,在原核细胞中表达目的 重组蛋白并纯化,经溶血酶酶切后释放目的 蛋白.用EIA方法测定SZ9711株和VA387株P粒子与唾液HBGAs的结合情况.结果 SDS-PAGE电泳分析确定重组融合蛋白的表达,经纯化和凝血酶切后获得约38×10^3的目的 蛋白P蛋白.根据EIA分析表明,SZ9711株P粒子与先前报道的VA387株P粒子与唾液HBGAs模式相同,与A、B和O^secretor有亲和力,但与O^non-secretor亲和力非常低.同时,SZ9711与A抗原的亲和力较VA387与A抗原的亲和力低.结论 本研究利用我国分离到的SZ9711株制备的P粒子进行唾液HBGAs受体结合分析,表明与同源性较高的先前报道的VA387 P粒子结合模式相似,为今后研究诺如病毒与宿主受体之间的关系奠定实验基础.  相似文献   

4.
Summary.  Human caliciviruses (HuCVs) are antigenically diverse. The antigenic relationships among different HuCVs have been difficult to study because HuCVs cannot be passaged in the laboratory. In this study, we describe cloning, sequencing and expression of the viral capsid proteins of three HuCVs that were identified in outbreaks of acute gastroenteritis in Virginia in 1997–1998. Yields of the capsid proteins similar to previously expressed recombinant Norwalk virus were obtained using the baculovirus expression system. Recombinant VA97207 capsid protein (rVA97207) and rVA98387, but not rVA98115, formed virus-like particles (VLPs). All three recombinant capsid antigens detected seroresponses in patients involved in outbreaks of acute gastroenteritis associated with genetically homologous or related HuCVs. The antigenic relationships of the three strains were further characterized using hyperimmune antisera against the three capsid antigens as well as four previously characterized recombinant capsid antigens of Norwalk (rNV), Mexico (rMxV), Hawaii (rHV), and Grimsby viruses (rGrV). VA98387 shared 98% aa identity with GrV; rVA98387 was detected by antisera to GrV. VA98115 shared 87% aa identity with Desert Storm virus and 65% aa identity with prototype Norwalk virus (NV); rVA98115 reacted weakly with NV antisera. VA97207 shared 80% aa identity with Amsterdam and 75% aa identity with Leeds strains and rVA97207 was not detected by any of the heterologous antibodies. In conclusion, VA97207 and VA98115 may belong to CV antigenic types not previously expressed, while VA98387 is a GrV-like virus. Low levels of cross-reactive antibodies were detected between types. Further studies to characterize these antigens and to develop enzyme immune assays (EIAs) for these strains are in progress. Received December 13, 2000 Accepted July 20, 2001  相似文献   

5.
Seroprevalence of noroviruses in swine   总被引:9,自引:0,他引:9       下载免费PDF全文
Noroviruses (NVs) are important human pathogens that cause acute gastroenteritis. Genetically related animal enteric NVs have also been described, but there is no evidence of interspecies transmission of NVs. In this study we characterized antibody prevalence among domestic pigs by using recombinant capsid antigens of two human NVs (Norwalk and Hawaii) and one swine NV (SW918) that is genetically related to GII human NVs. Recombinant SW918 capsid protein expressed in baculovirus self-assembled into virus-like particles (VLPs) that were detected by antibodies against GII (Hawaii and Mexico), but not GI (Norwalk and VA115), human NVs. NVs recognize human histo-blood group antigens as receptors, but SW918 VLPs did not bind to human saliva samples with major histo-blood group types. Seventy-eight of 110 (71%) pig serum samples from the United States and 95 of 266 (36%) pig serum samples from Japan possessed antibodies against SW918. Serum samples from pigs in the United States were also tested for antibodies against human NVs; 63% were positive for Norwalk virus (GI) and 52% for Hawaii virus (GII). These results indicate that NV infections are common among domestic pigs; the finding of antigenic relationships between SW918 and human NVs and the detection of antibodies against both GI and GII human NVs in domestic animals highlights the importance of further studies on NV gastroenteritis as a possible zoonotic disease.  相似文献   

6.
Tan M  Xia M  Cao S  Huang P  Farkas T  Meller J  Hegde RS  Li X  Rao Z  Jiang X 《Virology》2008,379(2):324-334
Noroviruses interact with histo-blood group antigen (HBGA) receptors in a strain-specific manner probably detecting subtle structural differences in the carbohydrate receptors. The specific recognition of types A and B antigens by various norovirus strains is a typical example. The only difference between the types A and B antigens is the acetamide linked to the terminal galactose of the A but not to the B antigen. The crystal structure of the P dimer of a GII-4 norovirus (VA387) bound to types A and B trisaccharides has elucidated the A/B binding site on the capsid but did not explain the binding specificity of the two antigens. In this study, using site-directed mutagenesis, we have identified three residues on the VA387 capsid that are sterically close to the acetamide and are required for binding to A but not B antigens, indicating that the acetamide determines the binding specificity between the A and B antigens. Further mutational analysis showed that a nearby open cavity may also be involved in binding specificity to HBGAs. In addition, a systematic mutational analysis of residues in and around the binding interface has identified a group of amino acids that are required for binding but do not have direct contact with the carbohydrate antigens, implying that these residues may be involved in the structural integrity of the receptor binding interface. Taken together, our study provides new insights into the carbohydrate/capsid interactions which are a valuable complement to the atomic structures in understanding the virus/host interaction and in the future design of antiviral agents.  相似文献   

7.
Noroviruses (NoVs) are one of the leading causes of acute gastroenteritis worldwide. NoV GII-4 VP1 protein was expressed in a recombinant baculovirus system using Sf9 insect cells. Several methods for purification and concentration of virus-like particles (VLPs) were evaluated. Electron microscopy (EM) and histo-blood group antigen (HBGA) binding assays showed that repeated sucrose gradient purification followed by ultrafiltration resulted in intact VLPs with excellent binding to H type 3 antigens. VLPs were stable for at least 12 months at 4°C, and up to 7 days at ambient temperature. These findings indicate that this method yielded stable and high-quality VLPs.  相似文献   

8.
人乳头瘤病毒6b L1/16E7嵌合蛋白的基因克隆和表达   总被引:3,自引:0,他引:3  
目的 研究HPV6bL1/16E7嵌合蛋白的基因克隆及其在昆虫细胞的表达,为防治尖锐湿疣和宫颈癌的基因工程疫苗研究作准备。方法 用PCR扩增出HPV6bL1/16E7嵌合蛋白基因,将其克隆到杆状病毒转移载体pVL1393,制备重组杆状病毒并感染昆虫细胞表达HPV6bL1/16E7嵌合蛋白。结果 HPV6bL1/16E7嵌合蛋白基因在昆虫细胞中得到了表达,并可自组装形成病毒样颗粒。结果 昆虫细胞表达的HPV6bL1/16E7嵌合病毒样颗粒可进一步用于HPV感染的免疫机理及基因工程疫苗研究。  相似文献   

9.
Human noroviruses (NoVs), members of the genus Norovirus in the family Caliciviridae, are the leading agents of nonbacterial acute gastroenteritis worldwide. Human NoVs are currently divided into at least two genogroups, genogroup I (GI) and genogroup II (GII), each of which contains at least 14 and 17 genotypes. To explore the genetic and antigenic relationship among NoVs, we expressed the capsid protein of four genetically distinct NoVs, the GI/3 Kashiwa645 virus, the GII/3 Sanbu809 virus, the GII/5 Ichikawa754 virus, and the GII/7 Osaka10-25 virus in baculovirus expression system. An antigen enzyme-linked immunosorbent assay (ELISA) with hyperimmune serum against the four recombinant capsid proteins and characterized previously three capsid proteins derived from GI/1, GI/4, and GII/12 was developed to detect the NoVs antigen in stools. The antigen ELISA was highly specific to the homotypic strains, allowing assignment of a strain to a Norovirus genetic cluster within a genogroup.  相似文献   

10.
Sapporo-like caliciviruses reveal typical calicivirus morphology and cause acute gastroenteritis. This study describes the expression in baculovirus of capsid proteins of two Sapporo-like calicivirus strains (Hou/86 and Hou/90). Eight different constructs of the capsid genes were compared for production of the proteins. Constructs containing short (9 or 19 nt) upstream sequences failed to produce capsid proteins but extension of the upstream sequence to 73 nt resulted in production of capsid proteins. Expressed capsid protein with the MEG tri-peptide as the N-terminus self-formed virus-like particles (VLPs). Expressed protein with an upstream AUG failed to form VLPs. Addition of His-tag to the N-terminus of capsid protein also blocked VLP formation. Of three Norwalk-Hou/90 chimeric capsid gene constructs, one resulted in production of chimeric capsid and the protein did not form VLPs. Recombinant capsid proteins for each of Hou/86 and Hou/90 were further characterized. The expressed capsid antigens of the two strains were antigenically distinct but shared a common epitope(s). Further study of these proteins should allow development of immunologic assays for diagnosis and should help to clarify the epidemiology of Sapporo-like caliciviruses in humans.  相似文献   

11.
A cDNA obtained from Grimsby virus (GRV), a Norwalk-like virus, purified from a stool sample of a symptomatic adult associated with a gastroenteritis outbreak in the United Kingdom, was used to obtain the complete nucleotide sequence of the second open reading frame (ORF2). The ORF2 sequence of GRV predicts a capsid of 539 amino acids (aa) which exhibits aa identities of 96% to Lordsdale virus, 67% to Mexico virus (MXV), and 43% to Norwalk virus (NV). The GRV capsid protein was expressed in insects cells by using a recombinant baculovirus, and the resulting virus-like particles (VLPs) possessed a protein with an apparent molecular weight of 58,000. Hyperimmune antisera raised against purified GRV, MXV, and NV VLPs were tested in an indirect enzyme-linked immunosorbent assay (ELISA) against GRV, NV, and MXV VLPs, revealing that GRV is antigenically distinct from both NV and MXV. The antigenic specificity of the GRV-hyperimmune antiserum was confirmed in an antigen capture ELISA using GRV-, NV-, or MXV-containing fecal specimens. The expression of the GRV capsid protein has, for the first time, allowed the antigenic comparison of three distinct recombinant Norwalk-like viruses.  相似文献   

12.
Summary.  Rabbit hemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV) are caliciviruses that produce severe symptoms and are lethal to rabbits and hares. The folding of the capsid protein was studied by determination of the antigenic pattern of chimeric capsid proteins, composed of regions from RHDV and EBHSV capsid proteins. The anti-RHDV monoclonal antibody (MAb) E3, which is known to bind an external conformational epitope, recognized the RHDV C-terminal region. The anti-RHDV MAb A47, which binds a buried epitope, recognized the RHDV N-terminal region. Using a pGEX expression library, we more precisely mapped the MAb A47 epitope on a 31 residues length peptide, between residue 129 and 160 of the VP60, confirming its location in the N-terminal part of the protein. These results demonstrate that the C-terminal part of the protein is accessible to the exterior whereas the N-terminal domain of the protein constitutes the internal shell domain of the particle. With the aim of using virus-like particles (VLPs) of RHDV as epitope carriers or DNA transfer vectors, we produced in the baculovirus system three proteins, ΔN1, ΔN2 and ΔN3, truncated at the N terminus. The ΔN1 protein assembled into VLPs, demonstrating that the first 42 amino acid residues are not essential for capsid assembly. In contrast, ΔN2, from which the first 75 residues were missing, was unable to form VLPs. The small particles obtained with the ΔN3 protein lacking residues 31 to 93, located in the immunodominant region of the RHDV capsid protein, indicate that up to 62 amino acid residues can be eliminated without preventing assembly. Received September 6, 2001; accepted March 13, 2002 Published online June 21, 2002  相似文献   

13.
14.
Noroviruses (NoVs) are responsible for the majority of gastroenteritis outbreaks in humans. Recently, NoV strains which are genetically closely related to human genogroup II (GII) NoVs have been detected in fecal specimens from swine. These findings have raised concern about the possible role of pigs as reservoirs for NoVs that could infect humans. To better understand the epidemiology of swine NoVs in both the swine and the human populations, rapid immunoassays are needed. In this study, baculovirus recombinants were generated to express the capsid gene of a swine NoV GII genotype 11 (GII.11) strain which self-assembled into virus-like particles (VLPs). Subsequently, the purified VLPs were used to evoke monoclonal antibodies (MAbs) in mice. A panel of eight promising MAbs was obtained and evaluated for their ability to bind to heterologous VLPs, denaturated antigens, and truncated capsid proteins. The MAbs could be classified into two groups: two MAbs that recognized linear epitopes located at the amino-terminal half (shell domain) of the swine NoV GII.11 VLPs and that cross-reacted with human GII.4 NoV VLPs. The other six MAbs bound to conformational epitopes and did not cross-react with the human GII.4 VLPs. To our knowledge, this is the first report on the characterization of MAbs against swine NoVs. The swine NoV VLPs and the MAbs described here may be further used for the design of diagnostic reagents that could help increase our knowledge of the prevalence of NoV infections in pigs and the possible role of pigs as reservoirs for NoVs.  相似文献   

15.
The Southampton norovirus (SV) capsid protein was expressed as VLPs by recombinant baculoviruses in insect cells and was used to immunize mice for the production of monoclonal antibodies (mAbs). One mAb, CM54, showed broad cross-reactivity to genogroup I (GI) noroviruses, but was not reactive to GII capsid proteins. Interestingly mAb CM54 reacted to a bovine norovirus capsid protein. Immunoblot analysis indicated the binding site for CM54 was located in the shell domain between amino acid residues 102-225 of the SV capsid protein. The epitope was mapped to high resolution using a peptide array and was located to the sequence LEDVRN at amino acid residues 162-167. Alignment of norovirus capsid protein sequences confirmed the epitope sequence was common to particular groups of human and bovine noroviruses. Modeling of the epitope onto the recombinant NV capsid protein revealed it was located to the inner surface of the shell domain.  相似文献   

16.
Recombinant baculovirus (BV) expression systems are widely applied in the production of viral capsid proteins and virus-like particles (VLPs) for use as immunogens and vaccine candidates. Traditional density gradient purification of VLPs does not enable complete elimination of BV-derived impurities, including live viruses, envelope glycoprotein gp64 and baculoviral DNA. We used an additional purification system based on ionic strength to purify norovirus (NoV) GII-4 capsid-derived VLPs. The anion exchange chromatography purification led to highly purified VLPs free from BV impurities with intact morphology. In addition, highly purified VLPs induced strong NoV-specific antibody responses in BALB/c mice. Here, we describe a method for NoV VLP purification and several methods for determining their purity, including quantitative PCR for BV DNA detection.  相似文献   

17.
Nudaurelia capensis omega virus (NomegaV) is a member of the Tetraviridae, a family of small, icosahedral, non-enveloped, (+) sense single-stranded RNA insect viruses with T = 4 symmetry. NomegaV virus-like particles (VLPs), which are morphologically indistinguishable from native virions and capable of packaging heterologous RNA, may be produced in the baculovirus expression system. As a first step towards manipulating the tropism of tetraviral nanoparticles (Capsivectors), a (His)6-tag was inserted into the GH loop (between Ala 378 and Gly 379) of the surface-exposed Ig-like domain of NomegaV capsid protein (p70). His-tagged p70 produced in a baculovirus expression system self-assembled into omegaHis VLPs that exhibited similar morphological and RNA encapsidation properties as wild-type NomegaV VLPs produced in the same system. Two assays using paramagnetic pre-charged nickel beads confirmed that multiple affinity tags were present on the surface of omegaHis VLPs and were capable of binding. These results indicate that the GH loop is a suitable site for the retargeting of NomegaV particles for potential biotechnological applications.  相似文献   

18.
Norovirus (NoV) -derived virus-like particles (VLPs) resemble empty shells of the virus and NoV P-particles contain only protruding domains of the NoV capsid. Both NoV-derived subviral particles show similar functionality and antigenicity in vitro and are considered to be potential vaccine candidates against NoV gastroenteritis. BALB/c mice were immunized with baculovirus-produced GII-4 VLPs or the corresponding Escherichia coli-produced P-particles by the intramuscular or intradermal route and the NoV-specific antibody and T-cell immune responses were compared. Elevated antibody levels were induced with a single VLP immunization, whereas P-particle immunization required a boost. High avidity antibodies were raised only by VLP immunization. VLP immunization resulted in a balanced T helper type 1/type 2 immune response whereas P-particles induced a T helper type 2-biased response. Only VLP immunization primed T cells for interferon-γ production. Most importantly, cross-reactive B and T cells were induced solely by VLP immunization. In addition, VLP antiserum blocked the binding of heterotypic VLPs to human histo-blood group antigen receptor and saliva. The findings in this study are relevant for the development of NoV vaccines.  相似文献   

19.
Summary. Human sapovirus (SaV) strains are agents of gastroenteritis. They cannot be grown in cell culture. In this study, constructs containing SaV N- and C-terminal-deleted recombinant capsid proteins (rVP1) were expressed in a baculovirus expression system to allow us to better understand the sequence requirements for the formation of virus-like particles (VLPs). Only proteins derived from N-terminal-deleted rVP1 constructs that began 49 nucleotides downstream assembled into VLPs, which included both small and native-size VLPs. Our results were similar to those reported in a rabbit hemorrhagic disease virus (RHDV) N- and C-terminal-deleted rVP1 expression study but were distinct from those reported in a norovirus N- and C-terminal-deleted rVP1 expression study, suggesting that SaV and RHDV may have similar expression requirements.  相似文献   

20.
Beak and feather disease virus (BFDV) is a common avian circovirus infection of wild Psittaciformes and is a recognised threat to endangered psittacine species. Currently, there is a requirement to develop BFDV antigen for diagnostic purposes and since efforts to propagate BFDV in vitro have so far been unsuccessful the entire coding region of BFDV ORF C1 was expressed in Sf9 insect cells using a baculovirus expression system. The entire coding region of BFDV ORF C1, the presumptive capsid, was expressed in Sf9 insect cells using baculovirus expression system. Electron microscopic examination of negatively stained material demonstrated that the recombinant protein self-assembled to produce virus-like particles (VLPs) thus confirming that ORF C1 is likely to be the sole determinant for capsid construction in vivo. BFDV VLPs also possessed haemagglutinating activity which provides further evidence that self-assembled BFDV VLPs retain receptor mediated biological activity and that the determinants for BFDV haemagglutination activity rely solely on the capsid protein. The recombinant protein reacted with anti-BFDV sera from naturally immune parrots and cockatoo and from chickens experimentally inoculated with native BFDV in both Western blots and haemagglutination inhibition (HI) assay. BFDV VLPs were also a suitable replacement antigen for serological detection of BFDV antibody by HI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号