首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高风速序列预测精度,提出一种基于两步分解的短期风速组合预测模型,首先使用鲁棒经验模态分解(REMD)将风速数据分解为不同频率的子序列,然后将REMD分解得到的高频模态分量使用小波包分解(WPD)进行第二步分解,降低风速序列不稳定性,提高其可预测性。其次对分解得到的高频子序列建立长短期记忆神经网络(LSTM)预测模型,低频子序列建立差分自回归移动平均模型(ARIMA)预测模型。最后叠加子序列预测结果得到风速预测结果。通过两组不同风速数据集的实验对该模型的性能进行科学评估,模型预测结果的平均绝对误差分别为0.3026、0.1255;均方根误差分别为0.498、0.1607。与其他几种对比预测模型相比,验证该模型具有一定的优越性。  相似文献   

2.
为提高短期风速的预测精度,提出一种基于双模式分解、双通道卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的组合预测模型以提高预测精度。首先,对经过PAM方法聚类后的风速时间序列利用奇异谱分解(SSD)和变分模态分解(VMD)2种信号分解方法进行分解,获得2类多尺度分量。不同模式的多尺度分量可降低原始风速的复杂度和非平稳性,实现不同模式模态分量规律的互补;其次,将2种分解方法得到的风速子序列合并为一个矩阵,输入到双通道CNN进行波形特征深度提取;最后,采用LSTM建立历史风速时序的时间依赖关系,在时空相关性分析的基础上得到最终风速预测结果。实验结果表明,基于双模式分解-双通道CNN-LSTM的组合预测模型可有效提高风速短期预测的精度。  相似文献   

3.
为了提高风速预测的准确性,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)二次分解和长短时记忆(LSTM)网络的风速多步预测方法。该方法首先应用变分模态分解(VMD)将原始风速序列进行一次分解,充分利用其分解后的残余分量并采用CEEMDAN方法进行二次分解;然后将分解后的所有子序列分别输入到LSTM模型中进行风速多步预测;最后将各模型输出结果进行叠加获得预测风速。以内蒙古某风电场实测数据为例进行建模和预测分析,结果表明所提出的风速多步预测模型具有较高的预测精度,具备实际应用的可行性。  相似文献   

4.
刘栋  魏霞  王维庆  叶家豪 《太阳能学报》2022,43(12):360-367
针对风电功率序列非线性、非平稳性特点,提出一种变分模态分解(VMD)-加权排列熵(WPE)和麻雀算法(SSA)优化极限学习机(ELM)的混合风电功率预测模型。首先,采用VMD技术将原始序列分解为多个固有模态分量,再采用WPE技术将各分量重组成若干个复杂度差异较大的子序列。然后,利用启发式SSA算法对ELM的参数进行优化,建立风电功率预测优化模型。最后,采用西北某风电场实际数据对所提模型进行验证。结果表明,与其他模型相比,所提模型提高了预测性能。  相似文献   

5.
《节能》2021,40(4):32-35
准确的风电功率预测可以减少风电对电网的负面影响、降低电力系统的运行成本。风电功率预测在电力现货交易中具有重要意义,但风电功率序列不稳定,给预测带来困难。为提高预测精度,将变分模式分解(VMD)、最大相关最小冗余度算法(mRMR)、长短期记忆神经网络(LSTM)和萤火虫算法(FA)相结合,建立了一种混合优化算法。首先,利用VMD将原始的历史风电功率序列分解为多个特征模态函数;然后,通过分析各分量之间的相关性,应用mRMR得到最优特征集;最后,利用FA对LSTM的各个参数进行优化,将各子序列的预测结果相加得到最终预测结果。对北京市鹿鸣山风电站的实际数据进行仿真模拟,并将仿真结果和其他4种模型进行对比,结果证明VMD-mRMR-FA-LSTM模型的预测结果精确度高,具有较高的推广和应用价值。  相似文献   

6.
为提高短期风速预测的准确性,提出一种基于PAM聚类、奇异谱分解(SSD)和LSTM神经网络的组合预测模型来预测短期风速,以解决上述问题。首先,为提高神经网络的学习效率,采用PAM算法对原始风速数据进行相似日聚类;其次,SSD具有抑制模态混叠和虚假分量产生的优点,使用SSD分解风速序列,提取多尺度规律;最后,由于LSTM神经网络捕捉长时间依赖的序列的波动规律的能力较强,使用LSTM神经网络对分解后的风速分量进行预测,将各分量预测值叠加得到最终预测结果。实验结果表明,基于PAM-SSD-LSTM的组合预测模型可有效提高风速短期预测的准确率。  相似文献   

7.
风速预测在风电场安全并网和智能化管理中起着决定性作用,针对风速的非线性和不稳定等特点,提出了一种基于变分模态分解(VMD)和改进鲸鱼算法优化的模糊神经网络(VMD-CGWOA-ANFIS)的混合预测模型。该模型首先使用变分模态分解技术将原始风速序列分解为一系列子序列,而后对各子序列分别采用模糊神经网络(ANFIS)建立预测模型。为进一步提高预测精度,同时克服鲸鱼(WOA)算法容易陷入局部最优和收敛过早的缺点,引入共轭梯度算法(CG)对WOA进行改进,利用改进的CGWOA算法对ANFIS参数进行优化。使用优化后的ANFIS分别对变分模态分解后的各子序列进行预测,最后将预测后的各子序列叠加得到最终预测结果。为测试模型的有效性,选择宁夏地区3组实际风电数据进行模拟试验,将ANFIS,VMD-ANFIS,VMD-WOA-ANFIS与提出模型进行对比,结果表明所提出的混合模型预测精度明显高于其他对比模型。  相似文献   

8.
为了对风电功率进行精确预测,提出一种基于改进算术优化算法(IAOA)、变分模态分解(VMD)和长短期记忆网络(LSTM)的超短期风电功率预测模型(IAOA-VMD-LSTM)。利用IAOA对VMD的关键分解参数k和α进行优化,得到的各固有模态函数(IMF)具有周期性,能够提升LSTM的预测精度,同时利用IAOA对LSTM网络参数进行优化。通过对风电功率数据进行预测分析,结果表明IAOA-VMD-LSTM预测模型相比于其他模型的预测精度更高。  相似文献   

9.
基于VMD-LSTM与误差补偿的光伏发电超短期功率预测   总被引:1,自引:0,他引:1       下载免费PDF全文
光伏序列具有的较高复杂性对光伏发电功率的预测精度产生了极大影响,对此提出一种基于VMD-LSTM与误差补偿的光伏发电超短期功率预测模型。该模型第1阶段采用VMD算法将原始功率序列分解为若干个不同的模态,并对其建立对应的LSTM网络模型进行预测,通过对各模态的预测结果求和得到初始预测功率;第2阶段采用LSTM网络对误差序列进行误差补偿预测,然后将初始预测功率和误差预测功率求和得到最终预测结果。仿真结果表明,该预测模型对天气具有较高的适应性,预测精度达到97%以上。  相似文献   

10.
随着风能在电力系统运行中的重要性不断加强,准确可靠的风速预测可以有效提高电网运行的稳定性,提高电网经济效益。提出了一种分解去噪、智能算法优化LSSVM的短期风速混合预测模型,首先对初始风速数据进行变分模态分解(VMD),然后利用样本熵(SE)评估各子序列的复杂程度,采用奇异谱分析(SSA)对最无序子序列进行降噪处理;一种改进的灰狼优化算法(IGWO)优化LSSVM的关键参数,提升了预测精度;最后将所有子序列的预测值叠加得到最终预测结果,以华中某风电场实际运行数据进行算例分析,结果表明该模型性能优于其他比较模型,在风速预测的实际应用中具有很大潜力。  相似文献   

11.
提出一种基于自回归求和滑动平均模型(autoregressive integrated moving average,ARIMA)与回声状态网络(echo state network,ESN)的短期风速预测模型。首先利用ARIMA模型对短期风速时间序列进行线性特征的预测,使得短期风速的残差仅包含非线性特征,然后利用ESN模型对非线性的残差序列进行预测,最后将ARIMA模型的短期风速线性预测值与ESN模型的短期风速非线性预测残差值进行相加得到最终的短期风速的预测值。单步与多步预测的仿真实验表明该混合预测模型具有更高的预测精度与更小的预测误差。  相似文献   

12.
风速信号具有的随机性和波动性的特点给风速预测的准确性带来了巨大挑战。现有的风速预测方法较多,但大都难以满足风电场需求的预测效果。文章提出了一种基于LMD-IMVO-LSSVM的短期风速预测方法。首先采用局部均值分解(LMD)方法将原始风速序列分解为若干个平稳的风速子序列,结合改进多元宇宙优化算法(IMVO)寻优最小二乘支持向量机(LSSVM)的可调参数预测方法,建立了LMD-IMVO-LSSVM的风速预测组合模型;然后对分解得到的每个平稳子序列进行单独的预测,叠加各子序列预测结果,即得到最终的风速预测值。通过实验仿真分析得出,文章提出的组合预测模型可大大提高风速预测的准确性。  相似文献   

13.
为提高月径流预测精度,提出了变分模态分解(VMD)和麻雀搜索算法(SSA)与长短期记忆神经网络(LSTM)相耦合,建立了月径流预测模型(VMD-SSA-LSTM)。首先利用VMD对历史径流数据进行分解,然后依据SSA对LSTM的参数进行寻优,并将分解出的月径流分量输入到LSTM神经网络,最后将每个分量的预测值相加,得到月径流预测值,并以福建池潭水库1950~2019年的月径流数据对模型进行验证。结果表明,与LSTM、VMD-LSTM模型相比,VMD-SSA-LSTM模型的预测精度更高,为开展月径流预测工作提供了一种新的选择。  相似文献   

14.
为解决由于风电预测中出现的波动性和随机性造成风电功率预测精确度不高的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)、Tent混沌映射、随机游走的麻雀搜索优化算法(sparrow search algorithm,SSA)和最小二乘支持向量机(least squares support vector machines,LSSVM)的组合模型。首先应用鲸鱼优化算法(whales optimization algorithm,WOA)对VMD的核心参数(K值和惩罚系数α)进行自动寻优。经过WOA-VMD对原始风电功率时间序列分解过后,引入改进的麻雀搜索算法SSA优化最小二乘支持向量机LSSVM中的学习参数,然后对分解得到的各个子序列建立SSALSSVM预测模型;最后叠加各个子序列的预测值并得到最终预测值。经实验仿真对比,该文组合模型较现有单一预测模型和普通组合模型在预测精度上有较大提高。  相似文献   

15.
准确的秒级风速实时预测能够提高风电机组的运行状况和控制品质,为电网做出最优调度决策提供辅助信息。目前风速实时预测时间分辨率通常为分钟级,且在小数据集的情况下模型泛化能力弱。文章以时间分辨率为5 s的风速序列为研究对象,提出了基于多任务学习的风速实时预测方法。该方法结合了变分模态分解方法和长短期记忆神经网络。首先,通过变分模态将风速序列分解为一系列信号;然后,建立多任务学习的共享层,使用长短期记忆神经网络提取各分解信号中的共享参数,深度挖掘分享子序列预测任务间的信息;最后,建立多任务学习的特定任务层,借助多个LSTM并行预测分解后的风速子序列,并将多个预测结果叠加得到风速实时预测结果。算例结果表明:所提多任务学习模型在10步、5步预测中的均方根误差总体均值分别为0.80 m/s和0.71 m/s,与经过变分模态分解和未经过变分模态分解的单任务模型预测相比,所提模型均方根误差总体均值在10步预测中分别降低了35.5%和39.8%,在5步预测中分别降低了24.5%和45.8%。  相似文献   

16.
考虑到风速时间序列非平稳特性和时序关联难以建模的问题,提出一种基于变分模态分解和深度门控循环网络的风速短期预测模型。该模型首先使用变分模态分解非递归地将原始风速序列分解为预先设定层数的子分量,以期降低原始序列的不平稳度,使用深度门控网络分别对各子分量建模预测,最后叠加各分量的预测结果,得到风速的预测结果。实例研究表明所提模型能够有效地跟踪风速的变化,具有较高的短期预测精度。  相似文献   

17.
魏炘  石强  符文熹  陈良 《水电能源科学》2020,38(11):207-210
为降低由于风速信号的非线性和非平稳性带来的风速预测难度,提高短期风速预测的准确性,提出一种考虑样本熵的组合分解模式和支持向量回归(SVR)相结合的预测模型。首先采用自适应噪声的完全集合经验模态分解(CEEMDAN)方法分解风速历史数据,并计算各模态分量的样本熵;然后采用变分模态分解(VMD)方法对样本熵最大的模态分量进行二次分解,充分削弱风速分量的非平稳性;接着对分解得到所有模态分量分别建立SVR预测模型;最后将各分量的预测值求和完成最终风速预测。实例分析表明,所提模型对比其他模型的预测误差最小,预测精度最高,可有效预测短期风速。  相似文献   

18.
干旱是一种由长期缺水导致的现象,及早发现干旱现象并预测其程度,对于科学防旱抗旱至关重要。为此,提出一种基于变分模态分解算法(VMD)和融合注意力机制(Attention)的门控循环单元(GRU)的干旱指数预测方法。首先使用蝴蝶优化算法(BOA)对VMD进行参数寻优,将标准化降水蒸散发指数(SPEI)数据分解为一组波动性较小的子序列;然后将注意力机制引入GRU模型,对各子序列进行预测;最后将各子序列预测结果加和得到SPEI预测值。使用BVMD-Attention-GRU模型对乌鲁木齐市SPEI进行预见期为6个月的中长期预测,并构建GRU、VMD-GRU、BVMD-GRU模型进行对比试验。试验结果表明,BVMD-Attention-GRU模型具有更高的预测精度,适用于中长期干旱预测。  相似文献   

19.
针对区域电力负荷的时间序列数据随机性强、预测精度低及单一模型的数据特征提取能力差等问题,提出了一种支持向量机(SVM)、STL时序分解法、长短期记忆神经网络(LSTM)组合的电力负荷预测模型。该模型利用SVM对时间序列的电力负荷数据进行初始预测,并通过STL时序分解法对残差序列进行时序分解,从而提高残差序列的稳定性,减小其随机性,最后用LSTM对SVM的预测误差进行修正。试验结果证明,该方法利用误差修正可有效处理随机性强的数据,有利于预测结果的稳定性,提高预测精度。  相似文献   

20.
针对短期电力负荷预测精度不高的问题,提出集合变分模态分解(VMD)、长短期记忆(LSTM)网络及多元线性回归(MLR)的VMD-LSTM-MLR预测方法。先使用VMD将电力负荷数据分解为特征、频率均不同的本征模态函数,然后用LSTM对高频部分进行预测,用MLR对低频部分进行预测,最后将LSTM与MLR得到的预测结果进行叠加,获得完整的预测结果。使用VMD-LSTM-MLR预测方法对江苏省某市电力负荷数据进行预测,验证了VMD-LSTM-MLR在预测电力负荷数据上有较高的精度,其平均绝对百分比误差M_(APE)、均方根误差R_(MSE)均低于目前比较典型的改进算法,以及所列举的4种组合算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号