首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glioblastoma (GBM), the most common primary brain tumor, is a complex and extremely aggressive disease. Despite recent advances in molecular biology, there is a lack of biomarkers, which would improve GBM’s diagnosis, prognosis, and therapy. Here, we analyzed by qPCR the expression levels of a set of miRNAs in GBM and lower-grade glioma human tissue samples and performed a survival analysis in silico. We then determined the expression of same miRNAs and their selected target mRNAs in small extracellular vesicles (sEVs) of GBM cell lines. We showed that the expression of miR-21-5p was significantly increased in GBM tissue compared to lower-grade glioma and reference brain tissue, while miR-124-3p and miR-138-5p were overexpressed in reference brain tissue compared to GBM. We also demonstrated that miR-9-5p and miR-124-3p were overexpressed in the sEVs of GBM stem cell lines (NCH421k or NCH644, respectively) compared to the sEVs of all other GBM cell lines and astrocytes. VIM mRNA, a target of miR-124-3p and miR-138-5p, was overexpressed in the sEVs of U251 and U87 GBM cell lines compared to the sEVs of GBM stem cell line and also astrocytes. Our results suggest VIM mRNA, miR-9-5p miRNA, and miR-124-3p miRNA could serve as biomarkers of the sEVs of GBM cells.  相似文献   

2.
For quantitative microRNA analyses in formalin-fixed paraffin-embedded (FFPE) tissue, expression levels have to be normalized to endogenous controls. To investigate the most stably-expressed microRNAs in breast cancer and its surrounding tissue, we used tumor samples from primary tumors and from metastatic sites. MiRNA profiling using TaqMan® Array Human MicroRNA Cards, enabling quantification of 754 unique human miRNAs, was performed in FFPE specimens from 58 patients with metastatic breast cancer. Forty-two (72%) samples were collected from primary tumors and 16 (28%) from metastases. In a cross-platform analysis of a validation cohort of 32 FFPE samples from patients with early breast cancer genome-wide microRNA expression analysis using SurePrintG3 miRNA (8 × 60 K)® microarrays from Agilent® was performed. Eleven microRNAs could be detected in all samples analyzed. Based on NormFinder and geNorm stability values and the high correlation (rho ≥ 0.8) with the median of all measured microRNAs, miR-16-5p, miR-29a-3p, miR-126-3p, and miR-222-3p are suitable single gene housekeeper candidates. In the cross-platform validation, 29 human microRNAs were strongly expressed (mean log2-intensity > 10) and 21 of these microRNAs including miR-16-5p and miR-29a-3p were also stably expressed (CV < 5%). Thus, miR-16-5p and miR-29a-3p are both strong housekeeper candidates. Their Normfinder stability values calculated across the primary tumor and metastases subgroup indicate that miR-29a-3p can be considered as the strongest housekeeper in a cohort with mainly samples from primary tumors, whereas miR-16-5p might perform better in a metastatic sample enriched cohort.  相似文献   

3.
4.
In this study, we explored the predictive value of serum microRNA (miRNA) expression for early tumor progression during FOLFIRINOX chemotherapy and its association with overall survival (OS) in patients with pancreatic ductal adenocarcinoma (PDAC). A total of 132 PDAC patients of all disease stages were included in this study, of whom 25% showed progressive disease during FOLFIRINOX according to the RECIST criteria. MiRNA expression was analyzed in serum collected before the start and after one cycle of chemotherapy. In the discovery cohort (n = 12), a 352-miRNA RT-qPCR panel was used. In the validation cohorts (total n = 120), miRNA expression was detected using individual RT-qPCR miRNA primers. Before the start of FOLFIRINOX, serum miR-373-3p expression was higher in patients with progressive disease compared to patients with disease control after FOLFIRINOX (Log2 fold difference (FD) 0.88, p = 0.006). MiR-194-5p expression after one cycle of FOLFIRINOX was lower in patients with progressive disease (Log2 FD −0.29, p = 0.044). Both miRNAs were predictors of early tumor progression in a multivariable model including disease stage and baseline CA19-9 level (miR-373-3p odds ratio (OR) 3.99, 95% CI 1.10–14.49; miR-194-5p OR 0.91, 95% CI 0.83–0.99). MiR-373-3p and miR-194-5p did not show an association with OS after adjustment for disease stage, baseline CA19-9, and chemotherapy response. In conclusion, high serum miR-373-3p before the start and low serum miR-194-5p after one cycle are associated with early tumor progression during FOLFIRINOX.  相似文献   

5.
We identified the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) tissues by RNA sequencing, in which 168 miRNAs were significantly upregulated, including both strands of the miR-31 duplex (miR-31-5p and miR-31-3p). The aims of this study were to identify networks of tumor suppressor genes regulated by miR-31-5p and miR-31-3p in HNSCC cells. Our functional assays showed that inhibition of miR-31-5p and miR-31-3p attenuated cancer cell malignant phenotypes (cell proliferation, migration, and invasion), suggesting that they had oncogenic potential in HNSCC cells. Our in silico analysis revealed 146 genes regulated by miR-31 in HNSCC cells. Among these targets, the low expression of seven genes (miR-31-5p targets: CACNB2 and IL34; miR-31-3p targets: CGNL1, CNTN3, GAS7, HOPX, and PBX1) was closely associated with poor prognosis in HNSCC. According to multivariate Cox regression analyses, the expression levels of five of those genes (CACNB2: p = 0.0189; IL34: p = 0.0425; CGNL1: p = 0.0014; CNTN3: p = 0.0304; and GAS7: p = 0.0412) were independent prognostic factors in patients with HNSCC. Our miRNA signature and miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.  相似文献   

6.
MicroRNAs are known to play a critical role in skeletal myogenesis and maintenance, and cofilin-2 (CFL2) is necessary for actin cytoskeleton dynamics and myogenic differentiation. Nonetheless, target molecules and the modes of action of miRNAs, especially those responsible for the inhibitory mechanism on the myogenesis by saturated fatty acids (SFA) or obesity, still remain unclear. Here, we reported the role played by miR-429-3p on CFL2 expression, actin filament dynamics, myoblast proliferation, and myogenic differentiation in C2C12 cells. Palmitic acid (PA), the most abundant SFA in diet, inhibited the myogenic differentiation of myoblasts, accompanied by CFL2 reduction and miR-429-3p induction. Interestingly, miR-429-3p suppressed the expression of CFL2 by targeting the 3′UTR of CFL2 mRNA directly. Transfection of miR-429-3p mimic in myoblasts increased F-actin formation and augmented nuclear YAP level, thereby promoting cell cycle progression and myoblast proliferation. Moreover, miR-429-3p mimic drastically suppressed the expressions of myogenic factors, such as MyoD, MyoG, and MyHC, and impaired myogenic differentiation of C2C12 cells. Therefore, this study unveiled the crucial role of miR-429-3p in myogenic differentiation through the suppression of CFL2 and provided implications of SFA-induced miRNA in the regulation of actin dynamics and skeletal myogenesis.  相似文献   

7.
Metformin is the most used biguanide drug for the treatment of type 2 diabetes mellitus. Despite being mostly known for its hepatic anti-gluconeogenic effect, it is also known to modulate microRNAs (miRNAs, miRs) associated with metabolic diseases. The latter mechanism could be relevant for better understanding metformin’s mechanisms underlying its biological effects. In the current work, we found that metformin increases miR-378a-3p expression (p < 0.002) in C2C12 myoblasts previously exposed to hyperglycemic conditions. While the inhibition of miR-378a-3p was shown to impair metformin’s effect in ATP production, PEPCK activity and the expression of Tfam. Finally, mitophagy, an autophagic process responsible for the selective degradation of mitochondria, was found to be induced by miR-378a-3p (p < 0.04). miR-378a-3p stimulated mitophagy through a process independent of sestrin-2 (SESN2), a stress-responsible protein that has been recently demonstrated to positively modulate mitophagy. Our findings provide novel insights into an alternative mechanism of action of metformin involving miR-378a-3, which can be used in the future for the development of improved therapeutic strategies against metabolic diseases.  相似文献   

8.
We newly generated an RNA-sequencing-based microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC). Analysis of the signature revealed that both strands of some miRNAs, including miR-139-5p (the guide strand) and miR-139-3p (the passenger strand) of miR-139, were downregulated in HNSCC tissues. Analysis of The Cancer Genome Atlas confirmed the low expression levels of miR-139 in HNSCC. Ectopic expression of these miRNAs attenuated the characteristics of cancer cell aggressiveness (e.g., cell proliferation, migration, and invasion). Our in silico analyses revealed a total of 28 putative targets regulated by pre-miR-139 (miR-139-5p and miR-139-3p) in HNSCC cells. Of these, the GNA12 (guanine nucleotide-binding protein subunit alpha-12) and OLR1 (oxidized low-density lipoprotein receptor 1) expression levels were identified as independent factors that predicted patient survival according to multivariate Cox regression analyses (p = 0.0018 and p = 0.0104, respectively). Direct regulation of GNA12 and OLR1 by miR-139-3p in HNSCC cells was confirmed through luciferase reporter assays. Moreover, overexpression of GNA12 and OLR1 was detected in clinical specimens of HNSCC through immunostaining. The involvement of miR-139-3p (the passenger strand) in the oncogenesis of HNSCC is a new concept in cancer biology. Our miRNA-based strategy will increase knowledge on the molecular pathogenesis of HNSCC.  相似文献   

9.
Preterm labor (PTL) is one of the obstetric complications, and is known to be associated with abnormal maternal inflammatory response and intrauterine inflammation and/or infection. However, the expression of specific miRNAs associated with PTL is not clear. In this study, we performed combination analysis of miRNA array and gene array, and then selected one miRNA (miR-373-3p) and its putative target genes (CD44 and RDX) that exhibited large expression differences in term and PTL placentas with or without inflammation. Using qRT-PCR and luciferase assays, we confirmed that miR-373-3p directly targeted CD44 and RDX. Overexpression of miR-373-3p reduced the migration and invasion of trophoblast cells, while inhibition of miR-373-3p restored the migration and invasion abilities of trophoblast cells. Finally, we validated the expression of miR-373-3p and its target genes in clinical patients’ blood. miR-373-3p was increased in PTL patients’ blood, and was the most expressed in PTL patients’ blood with inflammation. In addition, by targeting the miR-373-3p, CD44 and RDX was decreased in PTL patients’ blood, and their expression were the lowest in PTL patients’ blood with inflammation. Taken together, these findings suggest that miR-373-3p and its target genes can be potential biomarkers for diagnosis of PTL.  相似文献   

10.
11.
MicroRNAs (miRNAs), a class of single stranded, small (~22 nucleotides), non-coding RNAs, play an important role in muscle development. We focused on the role of the miR-30-5p family during bovine muscle development from previous high-throughput sequencing results and analyzed their expression profiles. MHC and MyoG mRNAs expression as well as their proteins were suppressed in differentiated C2C12 cells, suggesting the importance of miR-30-5p in muscle development. MBNL, the candidate target of miR-30-5p, is an alternative splicing regulation factor. MBNL1 and MBNL3 have opposite effects on muscle differentiation. Our results confirmed that miR-30a-5p and miR-30e-5p repress the expression of MBNL1, MBNL2 and MBNL3, whereas miR-30b-5p inhibits MBNL1 and MBNL2 expression. This provides direct evidence that MBNL expression can be flexibly regulated by miR-30-5p. Previous studies showed that MBNL1 promotes exon inclusion of two muscle-related genes (Trim55 and INSR). Through RNA splicing studies, we found that miR-30-5p had an effect on their alternative splicing, which means miR-30-5p via MBNL1 could be integrated into muscle signaling pathways in which INSR or Trim55 are located. In conclusion, miR-30-5p could inhibit muscle cell differentiation and regulate the alternative splicing of Trim55 and INSR by targeting MBNL. These results promote the understanding of the function of miRNAs in muscle development.  相似文献   

12.
13.
Liver fibrosis is characterized by the accumulation of extracellular matrix (ECM) resulting in the formation of fibrous scars. In the clinic, liver biopsies are the standard diagnostic method despite the potential for clinical complications. miRNAs are single-stranded, non-coding RNAs that can be detected in tissues, body fluids and cultured cells. The regulation of many miRNAs has been linked to tissue damage, including liver fibrosis in patients, resulting in aberrant miRNA expression/release. Experimental evidence also suggests that miRNAs are regulated in a similar manner in vitro and could thus serve as translational in vitro–in vivo biomarkers. In this work, we set out to identify and characterize biomarkers for liver fibrosis that could be used in vitro and clinically for research and diagnostic purposes. We focused on miRNAs released from hepatic 3D cultures exposed to methotrexate (MTX), which causes fibrosis, and acetaminophen (APAP), an acute hepatotoxicant with no clinically relevant association to liver fibrosis. Using a 3D in vitro model, we corroborated compound-specific responses as we show MTX induced a fibrotic response, and APAP did not. Performing miRNA-seq of cell culture supernatants, we identified potential miRNA biomarkers (miR-199a-5p, miR-214-3p, niRNA-125a-5p and miR-99b-5p) that were associated with a fibrotic phenotype and not with hepatocellular damage alone. Moreover, transfection of HSC with miR-199a-5p led to decreased expression of caveolin-1 and increased α-SMA expression, suggesting its role in HSC activation. In conclusion, we propose that extracellular miR-214-3p, miR-99b-5p, miR-125a-5p and specifically miR-199a-5p could contribute towards a panel of miRNAs for identifying liver fibrosis and that miR-199a-5p, miR-214-3p and miR-99b-5p are promoters of HSC activation.  相似文献   

14.
MicroRNA (miRNA) is a type of non-coding RNA that regulates the expression of its target genes by interacting with the complementary sequence of the target mRNA molecules. Recent evidence has shown that genotoxic stress induces miRNA expression, but the target genes involved and role in cellular responses remain unclear. We examined the role of miRNA in the cellular response to X-ray irradiation by studying the expression profiles of radio-responsive miRNAs and their target genes in cultured human cell lines. We found that expression of miR-574-3p was induced in the lung cancer cell line A549 by X-ray irradiation. Overexpression of miR-574-3p caused delayed growth in A549 cells. A predicted target site was detected in the 3′-untranslated region of the enhancer of the rudimentary homolog (ERH) gene, and transfected cells showed an interaction between the luciferase reporter containing the target sequences and miR-574-3p. Overexpression of miR-574-3p suppressed ERH protein production and delayed cell growth. This delay was confirmed by knockdown of ERH expression. Our study suggests that miR-574-3p may contribute to the regulation of the cell cycle in response to X-ray irradiation via suppression of ERH protein production.  相似文献   

15.
This study was designed to evaluate the effects of strontium on the expression levels of microRNAs (miRNAs) and to explore their effects on skeletal cell proliferation, differentiation, adhesion, and apoptosis. The targets of these miRNAs were also studied. Molecular cloning, cell proliferation assay, cell apoptosis assay, quantitative real-time PCR, and luciferase reporter assay were used. Strontium altered the expression levels of miRNAs in vitro and in vivo. miR-9-5p, miR-675-5p, and miR-138-5p impaired skeletal cell proliferation, cell differentiation and cell adhesion. miR-9-5p and miR-675-5p induced MC3T3-E1 cell apoptosis more specifically than miR-138-5p. miR-9-5p, miR-675-5p, and miR-138-5p targeted glycogen synthase kinase 3 β (GSK3β), ATPase Aminophospholipid Transporter Class I Type 8A Member 2 (ATP8A2), and Eukaryotic Translation Initiation Factor 4E Binding Protein 1 (EIF4EBP1), respectively. Low-density lipoprotein receptor-related protein 5 (LRP5) played a positive role in skeletal development. miR-9-5p, miR-675-5p, and miR-138-5p damage strontium and LRP5-mediated skeletal cell proliferation, differentiation, and adhesion, and induce cell apoptosis by targeting GSK3β, ATP8A2, and EIF4EBP1, respectively.  相似文献   

16.
MicroRNAs constitute a class of ~22-nucleotide non-coding RNAs. They modulate gene expression by associating with the 3′ untranslated regions (3′ UTRs) of messenger RNAs (mRNAs). Although multiple miRNAs are known to be regulated during myoblast differentiation, their individual roles in muscle development are still not fully understood. In this study, we showed that miR-199a-3p was highly expressed in skeletal muscle and was induced during C2C12 myoblasts differentiation. We also identified and confirmed several genes of the IGF-1/AKT/mTOR signal pathway, including IGF-1, mTOR, and RPS6KA6, as important cellular targets of miR-199a-3p in myoblasts. Overexpression of miR-199a-3p partially blocked C2C12 myoblast differentiation and the activation of AKT/mTOR signal pathway, while interference of miR-199a-3p by antisense oligonucleotides promoted C2C12 differentiation and myotube hypertrophy. Thus, our studies have established miR-199a-3p as a potential regulator of myogenesis through the suppression of IGF-1/AKT/mTOR signal pathway.  相似文献   

17.
18.
Cleft lip with or without cleft palate (CL/P) is one of the most common congenital birth defects. This study aims to identify novel pathogenic microRNAs associated with cleft palate (CP). Through data analyses of miRNA-sequencing for developing palatal shelves of C57BL/6J mice, we found that miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p were significantly upregulated, and that miR-19a-3p, miR-130a-3p, miR-301a-3p, and miR-486b-5p were significantly downregulated, at embryonic day E14.5 compared to E13.5. Among them, overexpression of the miR-449 family (miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p) and miR-486b-5p resulted in reduced cell proliferation in primary mouse embryonic palatal mesenchymal (MEPM) cells and mouse cranial neural crest cell line O9-1. On the other hand, inhibitors of miR-130a-3p and miR-301a-3p significantly reduced cell proliferation in MEPM and O9-1 cells. Notably, we found that treatment with dexamethasone, a glucocorticoid known to induce CP in mice, suppressed miR-130a-3p expression in both MEPM and O9-1 cells. Moreover, a miR-130a-3p mimic could ameliorate the cell proliferation defect induced by dexamethasone through normalization of Slc24a2 expression. Taken together, our results suggest that miR-130-3p plays a crucial role in dexamethasone-induced CP in mice.  相似文献   

19.
Brain microvascular endothelial cells (BMECs) constitute the structural and functional basis for the blood–brain barrier (BBB) and play essential roles in bacterial meningitis. Although the BBB integrity regulation has been under extensive investigation, there is little knowledge regarding the roles of long non-coding RNAs (lncRNAs) in this event. The present study aimed to investigate the roles of one potential lncRNA, lncRSPH9-4, in meningitic E. coli infection of BMECs. LncRSPH9-4 was cytoplasm located and significantly up-regulated in meningitic E. coli-infected hBMECs. Electrical cell-substrate impedance sensing (ECIS) measurement and Western blot assay demonstrated lncRSPH9-4 overexpression in hBMECs mediated the BBB integrity disruption. By RNA-sequencing analysis, 639 mRNAs and 299 miRNAs were significantly differentiated in response to lncRSPH9-4 overexpression. We further found lncRSPH9-4 regulated the permeability in hBMECs by competitively sponging miR-17-5p, thereby increasing MMP3 expression, which targeted the intercellular tight junctions. Here we reported the infection-induced lncRSPH9-4 aggravated disruption of the tight junctions in hBMECs, probably through the miR-17-5p/MMP3 axis. This finding provides new insights into the function of lncRNAs in BBB integrity during meningitic E. coli infection and provides the novel nucleic acid targets for future treatment of bacterial meningitis.  相似文献   

20.
It is challenging to overcome the low response rate of everolimus in the treatment of patients with hepatocellular carcinoma (HCC). To overcome this challenge, we combined everolimus with Ku0063794, the inhibitor of mTORC1 and mTORC2, to achieve higher anticancer effects. However, the precise mechanism for the synergistic effects is not clearly understood yet. To achieve this aim, the miRNAs were selected that showed the most significant variation in expression according to the mono- and combination therapy of everolimus and Ku0063794. Subsequently, the roles of specific miRNAs were determined in the processes of the treatment modalities. Compared to individual monotherapies, the combination therapy significantly reduced viability, increased apoptosis, and reduced autophagy in HepG2 cells. The combination therapy led to significantly lower expression of miR-4790-3p and higher expression of zinc finger protein225 (ZNF225)—the predicted target of miR-4790-3p. The functional study of miR-4790-3p and ZNF225 revealed that regarding autophagy, miR-4790-3p promoted it, while ZNF225 inhibited it. In addition, regarding apoptosis, miR-4790-3p inhibited it, while ZNF225 promoted it. It was also found that HCC tissues were characterized by higher expression of miR-4790-3p and lower expression of ZNF225; HCC tissues were also characterized by higher autophagic flux. We, thus, conclude that the potentiated anticancer effect of the everolimus and Ku0063794 combination therapy is strongly associated with reduced autophagy resulting from diminished expression of miR-4790-3p, as well as higher expression of ZNF225.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号