首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, the very thin layer‐by‐layer (LBL) film that was constructed by dip coating method on indium tin oxide surface can be used in liquid crystal (LC) displays devices. The obtained results indicate that the ultrathin LBL film shows the homeotropic alignment layer, and a uniform vertical alignment of LC molecules was gained very easily. The progress of vertical‐aligned LC cells with a LBL layer was evaluated. The obtained threshold voltage and response time of the LC cell were 2.472 V and 12.5 ms, respectively. So, the competitive performance of the LC cell could allow new sign at a low‐cost budget with rubbing process in LC display technology.  相似文献   

2.
The liquid‐crystal (LC) alignment properties of polyamide films exposed to ultraviolet (UV) light were investigated. It was found that the uniform and stable alignment of LC molecules was achieved on films of aromatic polyamides exposed to linearly polarized UV light, even though these polymers contained no common photoreactive group such as cinnamoyl, coumarin, or azo chromophore. The alignment was induced in the same direction, which was perpendicular to the electric‐field vector of the linearly polarized light. The change in the UV‐visible absorption spectra before and after UV exposure suggested that the photoreaction of aromatic polyamide occurred only on the film surface, and that even such a small change in the film was enough to induce uniform alignment of the LC molecules. Furthermore, it was suggested that the photoreaction of this system was accelerated in the presence of oxygen. This paper also deals with the effect of the chemical structure of polymers on their LC photoalignment characteristics, i.e., the sensitivity of the photoinduced LC alignment. As a result, polymer materials with excellent LC photoalignment sensitivity have been determined, which could induce the uniform and unidirectional LC alignment by irradiation of 0.2–0.5 J‐cm?2 of linearly polarized 313‐nm light. In addition, the alignment of the LC cell was found to be thermally and optically stable.  相似文献   

3.
Nowadays, thin‐film transistor liquid crystal displays (TFT‐LCDs) have realized high reliability of display characteristics by improving liquid crystal (LC) materials and cell fabrication processes. In order to improve display reliability, measurement methodologies are important to see the progress of improvement of materials and processes; thus, our group has proposed voltage holding ratio (VHR), ion impurity, residual direct current (DC) and elastic constants for LC cells, and the optical anisotropy of an alignment layer on indium tin oxide (ITO) glass substrate for LCD industry. In case of an ion impurity, we have succeeded in measuring the ion impurity amount in TFT‐LCD. Furthermore, we have recently proposed ion impurity measurement methodology for beyond LCD applications that are organic light emitting diode (OLED) and organic photovoltaics (OPV). In this review, I introduce each measurement methodology for LCDs and beyond LCDs in detail.  相似文献   

4.
We have developed a new microstructure film for wide viewing liquid crystal displays (LCDs). By attaching it to the surface of a conventional LCD, the viewing angle characteristics of LCD has drastically improved without causing a blur of the frontal image and a decrease in the contrast ratio under bright ambient light conditions. This film can be applied to various LC modes including twisted nematic and multidomain vertical alignment by changing its internal micrometer‐size 3D structure. Further, this film can be mass‐produced efficiently by self alignment roll‐to‐roll process.  相似文献   

5.
In this article, we demonstrate the liquid crystal (LC) alignment characteristics of solution‐derived nickel oxide (NiO) film modified with ion‐beam (IB) irradiation. Cross‐polarized optical microscopy and pretilt angle measurements verified that uniform LC alignment was achieved using the NiO film as an alignment layer regardless of IB incidence angle. Contact angle measurements revealed that all of the NiO films had a deionized water contact angle below 90°, which indicates that they had hydrophilic surfaces that had an effect on the homogeneous LC alignment. Atomic force microscopy was conducted to determine the physical surface modification due to the IB irradiation, which showed that it reduced the size of the surface grains with agglomerations depending on the surface tilt from the IB incidence angle. Furthermore, microgroove structures strongly related to uniform LC alignment were observed after IB irradiation. Chemical surface modification was investigated via an X‐ray photoelectron spectroscopy analysis which revealed that IB irradiation modified the chemical bonds in the NiO film, and this affected the LC alignment state. Thus, these results indicate that using NiO film exposed to IB irradiation as an alignment layer is a suitable method for LC applications.  相似文献   

6.
Abstract— A series of polyimides containing various side chains was synthesized in order to investigate the effect of side chains on the alignment of liquid crystals on the rubbed surface. Here, the side chains include short flexible alkyl spacers and isomeric biphenyl mesogens. The pretilting of liquid‐crystal (LC) molecules was found to be very sensitive to the isomeric structure of biphenyl mesogen end groups as well as the conformation and length of flexible spacers, in addition to the rubbing process. The pretilt angle of LC molecules in the LC cell was achieved in a wide angle range of 8–27°, depending upon the rubbing density as well as the side chains. The high performance in the pretilt and alignment of LCs might be attributed mainly to a strong interaction between the biphenyl mesogen end group in the side chain and the LC molecule in addition to the microgrooves generated in the rubbing direction.  相似文献   

7.
Abstract— By introducing polyhedral oligomeric silsesquioxane (POSS) nanoparticles along with a controlled amount of UV‐curable reactive mesogen (RM) into a liquid‐crystalline (LC) medium, a multi‐domain vertical‐alignment LC device was successfully demonstrated. The device, possessing a vertically aligned LC director in four different azimuthal directions, exhibited a fast response time and wide‐viewing‐angle characteristics, in the absence of conventional polymer‐type vertical‐alignment layers. Electro‐optic characteristics of the fabricated device, before and after UV curing of the cell, were studied. The surface morphology of the substrate surfaces were analyzed by using field‐emission scanning electron microscopy (FESEM). The experimental results show that the technology will possibly be applicable to cost‐effective vertical‐alignment liquid‐crystal devices and is suitable for green‐technology liquid‐crystal displays.  相似文献   

8.
Abstract— We have developed a novel method of aligning liquid‐crystal (LC) molecules that employs a layer patterned with hydrophilic and hydrophobic regions fabricated by the photocatalysis of TiO2. This method provides a resolution on the order of 10μm for the alignment of LC molecules without the need for protrusions or patterned electrodes. Using this method, we achieved the continuous multidomain vertical alignment of LC molecules.  相似文献   

9.
Abstract— Based on the drop‐on‐demand characteristics of ink‐jet printing, the multi‐domain alignment liquid‐crystal display (LCD) could be achieved by using patterned polyimide materials. These polyimide ink locations with different alignment procedures could be defined in a single pixel, depending on the designer 's setting. In this paper, we combined the electro‐optical design, polyimide ink formulation, and ink‐jetting technology to demonstrate the application of multi‐domain alignment liquid‐crystal display manufactory. The first one was a multi‐domain vertical‐alignment LCD. After the horizontal alignment material pattern on the vertical alignment film, the viewing angle would reach 150° without compensation film. The second one was a single‐cell‐gap transflective LCD within integrating the horizontal alignment in the transmissive region and hybrid alignment in the reflective one in the same pixel. In addition, this transflective LCD was also demonstrated in the form of a 2.4‐in. 170‐ppi prototype.  相似文献   

10.
Vertical alignment (VA) and in‐plane switching modes have been widely used for liquid crystal displays (LCDs). They require a polyimide (PI) alignment layer in the pixel structure. PI‐free LCDs have been proposed to exploit the VA of liquid crystals (LCs) obtained by dissolving dendrimers without PI. In this paper, we report a new PI‐free VA mode with a pixel structure that has in‐plane electrodes. The PI‐free VA is achieved by dissolving an LC dendrimer in a positive LC mixture. We measured the test cell properties and obtained a lower voltage and a higher brightness in the voltage–brightness curve. In addition, we analyzed the alignment surface of LC dendrimer by time‐of‐flight secondary ion mass spectrometry and scanning electron microscopy observations. We found that dendrimer molecules are uniformly adsorbed on the glass surface and that the layer was generally one molecule thick. These properties are responsible for the lower voltage and higher brightness of the PI‐free VA mode. The use of dendrimers allows the PI process to be omitted and reduces the power consumption of the VA mode. It is thus possible to reduce the high manufacturing costs and improve the performance of the VA mode.  相似文献   

11.
Abstract— We report on a new method of fabricating a vertically aligned multi‐domain liquid‐crystal display (LCD) using surface‐relief gratings. A linear array of surface‐relief gratings was produced by using a photosensitive polymer material coated on glass substrates by the illumination of the UV light through a photomask. The LCD cell was assembled with two substrates with polymer gratings in such way that the grating vectors were orthogonal to each other. In this LCD configuration, the nematic molecules were reoriented by distortions of an external electric field at the grating surfaces to make four different domains. The LC cell with self‐aligned four domains shows excellent extinction in the off‐state and wide‐viewing characteristics in the on‐state.  相似文献   

12.
Abstract— In this paper, we present results from a new liquid crystal over plastic printed thin‐film‐transistor (TFT) display. The display demonstrator shows that the processing incompatibilities between the plastic TFT backplane and the liquid‐crystal materials can be addressed to make a stable twisted‐nematic structure. New fabrication processes such as the photo‐alignment of liquid crystals have made it possible to create a new generation of displays, which pave the way towards fully integrated plastic liquid‐crystal‐display technologies.  相似文献   

13.
The electrospray deposition (ESD) method is an established film‐forming technique. To control the pretilt angle on films, we developed two novel ESD methods for spraying two kinds of solutions containing alignment materials. One method is a simultaneous spraying method, while the other is a time‐divided spraying method. When we used the simultaneous‐spraying ESD method, we observed numerous fine liquid crystal (LC) domains with a diameter of approximately 10 µm in the LC cell. These LC domains were substantially smaller than those of LCs fabricated using the conventional ESD method. However, the pretilt angle could not be controlled over a wide range because multiple parameters could not be simultaneously controlled to achieve a stable spray. Using the time‐division ESD method, we controlled the pretilt angle over a wide range from 5° to 40°, with tiny domains. As a demonstration, we fabricated a 270° super‐twisted nematic mode cell using this method.  相似文献   

14.
Abstract— A fringe‐field‐switching (FFS) mode cell having LC alignment has been developed by using a non‐rubbing method, a ion‐beam‐alignment method on a‐C:H thin film, to analyze the electro‐optical characteristics of this cell. The suitable inorganic thin film for FFS‐LCDs and the alignment capabilities of nematic liquid crystal (NLC) have been studied. An excellent voltage‐transmittance (V‐T) and response‐time curve for the ion‐beam‐aligned FFS‐LCDs were observed using oblique ion‐beam exposure on DLC thin films.  相似文献   

15.
Abstract— An AC electric field to drive the IPS mode of a liquid‐crystal display (LCD) causes a reduction in the contrast after a long period of display operation. This phenomenon is refered to as the AC image‐sticking problem caused by long‐term driving. Thus far, there is no useful method of quantitatively evaluating AC image sticking. LCD panel products that use the IPS mode have been evaluated for a decade. In this paper, a new evaluation parameter (Δθ), which was recently proposed by Suzuki et al., is introduced. It was calculated from the slight difference in the deviation angle of LC molecules from the rubbing direction. Results from several conditions of test samples are presented in this paper as a phenomena that reflect the interaction between the surface of the PI alignment and the LC molecules. The results and discussions describe reasons for azimuthal gliding after long display operation for weak AC voltage driving. It is explained by suitably adopting the Kelvin‐Voigt model which is used to discuss the rheology of viscoelastic material. It is concluded that the surface rheology of PI alignment is one of the most important factors for the contrast reduction of the AC image‐sticking problem.  相似文献   

16.
Abstract— The recent development of polymer‐induced pretilt angle in multi‐domain vertical‐alignment liquid‐crystal (LC) structures is reviewed. To create a small but well‐defined pretilt angle, ~0.1 wt.% of a photo‐curable monomer was mixed in an LC host and a bias voltage was applied to reorient the LC directors within each domain. The monomers are polymerized near the substrate surfaces by UV exposure. The formed polymer layers change the surface pretilt angle of the LC from 90° to about 89° with a defined azimuthal orientation. Consequently, within each domain the LC reorientation direction responding to the external field is well‐defined which leads to faster rise time and higher transmittance. This new technology overcomes the long standing problems of conventional MVA devices and is therefore expected to play a dominant role in the future.  相似文献   

17.
Abstract— A new optical rewritable (ORW) liquid‐crystal‐alignment technology has been developed to create a display and to demonstrate its maturity and potential. ORW displays have no electrodes and use polarizers as substrates. The display requires no photolithography on plastic. Its simple construction secures durability and low cost for mass production. The on‐screen information is optically changed in a writing unit that consists of an LCD mask and an exposure source that is based on LEDs, low power, and low cost in comparison with Hg lamps or lasers. A high contrast image can be easily written, viewed, and rewritten through a polarizer, while the multi‐stable gray‐level image requires zero power to maintain the image. Reconfigurable LC alignment using ORW technology best suits plastic‐card displays as well as for LC photonics and various one‐mask processes of patterned LC‐alignment applications.  相似文献   

18.
Abstract— The adsorption strength of liquid‐crystal molecules on the alignment‐layer (polymer) surface was judged measuring temperature dependence of birefringence of an absorbed liquid‐crystal layer above the nematic—isotropic transition temperature. The relationship between the surface‐order parameter and the adsorption strength of liquid‐crystal molecules on the non‐rubbed polymer surface was also discussed.  相似文献   

19.
Abstract— Photostability of liquid‐crystal (LC) materials and surface alignment layers was evaluated using a UV lamp and a blue laser beam. Both organic polyimide (PI) and inorganic silicon‐dioxide (SiO2) alignment layers were studied under nitrogen environment. Two commercial TFT‐grade LC mixtures (low‐birefringence MLC‐9200‐000 and high‐birefringence TL‐216) were used for comparisons. Results indicate that SiO2 alignment layers are much more robust than PI layers, and low birefringence LCs are more stable than the high‐birefringence ones. At the He‐Cd laser wavelength (λ = 442 nm), both LC mixtures and SiO2 alignment layers are hardly damaged. To lengthen the lifetime of an LCD projector, inorganic SiO2 alignment layers, high‐optical‐density UV filter, long cutoff‐wavelength blue filter, and short‐conjugation (low birefringence) LC materials should be considered.  相似文献   

20.
Abstract— A pixel‐isolated liquid‐crystal (PILC) mode for enhancing the mechanical stability of flexible‐display applications is proposed. Because liquid‐crystal (LC) molecules in this mode are isolated in each pixel by patterned or phase‐separated microstructures, and the two substrates are tightly attached to each other by a solidified polymer layer, the LC alignment is stable against external pressure, and the cell gap of our structure is uniformly preserved against bending deformation of the plastic substrates. The mechanical stability of the PILC structure having plastic substrates was tested for its electro‐optic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号