首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《Ceramics International》2017,43(16):13314-13329
In the present work, AlCrN coating was deposited on Al2O3/TiCN ceramic inserts with varying thin film thickness using physical vapor deposition (PVD) technique. The thickness, surface morphology, chemical composition, hardness and adhesion strength of the coating to the substrate were characterized by field-emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), micro-indentations and scratch tests respectively. The machining performance of uncoated and coated tools was investigated in hard turning of AISI 52100 steel (62 HRC) under dry environment. The cutting behavior was analyzed in terms of machining forces, tool temperature, wear, friction and chip morphology. Further, a 3D finite element model with hybrid friction criterion has been adopted to support the experimental findings. The results revealed that coating/substrate adhesion and edge radius were the deciding criteria for the machining performance of coated tools with 3 µm coating thickness tool exhibiting best turning performance on Al2O3/TiCN mixed ceramic insert.  相似文献   

2.
We show that thin diamond coatings can dramatically enhance the performance of micrometer-scale cutting tools. We present a new approach for coating 300 μm diameter tungsten carbide (WC) micro end mills using a tailored seeding method and hot filament chemical vapor deposition (HFCVD) to obtain uniform, conformal, and continuous diamond coatings less than 2 μm in both thickness and grain size. The performance of the uncoated and coated tools has been evaluated by dry machining channels in 6061-T6 aluminum. The test results demonstrate far lower tool wear and breakage, much lower adhesion of aluminum to the tool, and significantly lower cutting forces for the coated tools. The coatings achieve a more predictable surface finish and enable dry machining at high speeds (40,000 rpm) with little or no burr formation. The improved performance of the coated tools is a result of the superior tribological properties of fine-grained diamond against aluminum, specifically low friction, low adhesion, and low wear of the film. Since the coating allows machining without lubricants and essentially eliminates metal burrs, this approach can reduce the environmental impact of micro-machining processes and offers greatly improved performance for micro and meso-scale manufacturing applications.  相似文献   

3.
Coating a cutting tool improves wear resistance and prolongs tool life. Coating performance strongly depends on the mechanical and chemical properties of the coating material. In a machining process, the type of selected coating depends on the cutting condition because of the properties of the applied coating material. In addition, many factors, such as coating thickness, composition ratio, sequences of layers in multilayer coatings, and the deposition method influence the performance of a coating. In this study, the mechanical properties of TiCN and TiCN/ZrN were investigated using a ball on disk test. The substrate material made from a carbide-based cutting tool was also developed in-house. The analysis performed shows that the performances of TiCN and TiCN/ZrN coatings were found to be comparable to that of the commercial TiN-coated carbide-based cutting tool. Both the in-house and commercial coated inserts had significantly lower coefficient of friction than uncoated inserts, and the friction coefficient of TiCN coatings was constantly slightly lower than that of TiN coatings. Moreover, the coefficient of friction of the in-house developed TiCN was slightly lower than that of commercial TiN coating. However, the coefficient of friction of the in-house developed uncoated carbide inserts was slightly higher than that of commercial uncoated carbide inserts.  相似文献   

4.
Advanced ceramics after sintering are almost processed by grinding or non-traditional machining. Nevertheless, these methods are limited by complexity of processing efficiency, tool wear and economic effectiveness. So machining green ceramics before sintering is introduced, it is environmentally friendly, efficient and cheap with high removal rate of materials. During dry turning green ceramics, flank-wear of tools and processing quality of compacts are two main elements to evaluate cutting performance of tools. The processing efficiency and economic effectiveness are mainly effected by the cutting performance of tools. In this paper, polished tool, tool with nano-scale textured flank-face, tool with TiAlN coating deposited on polished flank-face, and tool with TiAlN coating deposited on nano-scale textured flank-face were prepared. Effect of nano-scale texture pretreatment on wear-resistance of WC/Co tools with/without TiAlN coated flank-face was studied in turning of green Al2O3 ceramics. Results displayed that nano-scale textures on the flank-face had prominent effects on the enhancement of flank-wear resistance of tools. Relevant mechanisms were explored that nano-scale textures exhibited “derivative cutting” to protect unworn face from abrasion, and nano-scale textures pretreated on the flank-face could enhance the adhesion strength between coating and matrix. These developed tools could also significantly improve the processing quality of machined surfaces.  相似文献   

5.
An innovative approach to improving the wear resistance and load-carrying capacity of surfaces is by development of novel systems featuring coating treatment. Evaluation of the tribological performance of three physical vapor deposition (PVD) coatings, namely, TiN, WC/C, and DLC (diamond-like carbon), is necessary to determine their suitability as coatings for high-speed and heavy-duty power-transmitting gears. The uncoated and coated steel balls were subjected to four-ball tests under lubricated conditions. An optical microscope and a scanning electron microscope were used to observe wear scars, and energy-dispersive X-ray analysis was performed to determine the chemical compositions of the materials; these methods were also used to analyze the wear mechanisms. The wear performance of the three coatings was compared, and a four-ball method extreme pressure test was performed to determine the last nonseizure load of each tribo-pair. The WC/C and DLC coatings showed excellent tribological performance under high contact pressures and thermal loads, and the benefits of these coatings increased with decreasing performance of the lubricating medium. Therefore, WC/C and DLC coatings are suitable for application in high-speed and heavy-duty gears. Oxidation wear and peeling, fatigue pitting, and adhesive transfer are the main coating failure modes of the TiN, WC/C, and DLC coatings, respectively.  相似文献   

6.
Coated tools are currently widely used tool technology in machining. The influence of tool coating on heat transfer has become an active field of research enjoying constantly increasing attention in the field of machining. This paper is devoted to the cutting temperature in machining H13 hardened steel with monolayer coated tools (TiN, TiAlN, and Al2O3) and multilayer coated tools (TiN/TiC/TiN and TiAlN/TiN). Equivalent composite thermal conductivity and thermal diffusivity of multilayer coated tools were calculated using the equivalent approach. The established heat transfer analytical models estimated coating temperature in turning. The effect of tool coating in steady and transient heat transfer was studied, as well as the cutting temperature distribution. It reveals that the tool coating material and coating thickness can influence the cutting temperature distribution of coated tool. Thermal conductivity of coating material affects the steady cutting temperature distribution, and thermal diffusivity of coating material affects the transient cutting temperature distribution of coating tools.  相似文献   

7.
《Ceramics International》2022,48(18):26342-26350
In this study, bilayer TiAlN/TiSiN and monolayer AlCrSiN ceramic films were grown on carbide cutting tool material by cathodic arc physical vapor coating (CAPVD) method to improve the structural/tribological properties and milling performances. The ceramic films were applied on cylindrical test samples and carbide end mills. The coated materials' structural, mechanical, and tribological properties were determined via scanning electron microscope (SEM), X-ray diffraction meter (XRD), tribometer, microhardness tester, and optical profilometer. DIN 40CrMnNiMo8-6-4 steel workpieces were machined by using a CNC vertical machining center to determine the actual working performance of the coated and uncoated cutting tools. The wear performance of the cutting tools after machining was determined by measuring the flank wear widths and mass losses. The hardness and adhesion results of the coated sample with bilayer TiAlN/TiSiN were higher than the coated sample with monolayer AlCrSiN. According to the scratch test results, the best adhesion results were obtained for TiAlN/TiSiN coating. The critical load value was determined as about 105 N. As a result, the wear rate value of the TiAlN/TiSiN thin film coated sample was lower. After machining, the mass loss of TiAlN/TiSiN coated tools was lower than AlCrSiN coated tools. In addition, the surface roughness value of the workpiece machined by the cutting tool coated with AlCrSiN was higher than the cutting tool coated with TiAlN/TiSiN.  相似文献   

8.
由于切削过程中产生高温、刀具粘结与氧化严重,钛合金切削尤其是干切削,一直是刀具行业的重大挑战之一,而在刀具表面添加涂层是提高钛合金切削刀具寿命的有效途径。利用脉冲磁控溅射技术制备了TiB2涂层刀具,以相同基体的无涂层刀具为对照,干铣削Ti-6Al-4V钛合金,切削速度从30~100 m/min变化,研究TiB2涂层刀具的切削性能与失效机理。所制备的TiB2涂层具有(100)择优取向的六方晶体结构,组织致密。涂层硬度可高达4000 HV。切削实验发现,在30 m/min的低速时,TiB2涂层刀具的切削寿命超过无涂层刀具57%之多,当切削速度加倍到60 m/min时,刀具寿命未见下降。当切削速度增加到100 m/min时,TiB2涂层刀具与无涂层刀具切削寿命相当。TiB2涂层刀具表面氧化所产生的B2O3液化膜,起自润滑作用,可充分减少钛合金的粘结,降低摩擦力。因此,在TiB2或B2O3消失之前,TiB2涂层刀具均有良好表现。在100 m/min时,切削高温造成B2O3强烈挥发,且TiB2被氧化为多孔疏松的TiO2,刀具寿命急剧下降到无涂层刀具的水平。  相似文献   

9.
Nanometer grain superhard ternary Ti(C,N) coatings with Vicker's nanohardness more than 50 GPa were deposited onto WC–Co cutting tools at ambient temperature using pulsed high-energy density plasma coaxial gun. Young's modulus of the coated tools was about 550 GPa. Because of the continuously graded interfaces between the coatings and substrates, the coatings are well adherent to the tool substrates with very high critical load up to more than 100 mN measured by nanoscratch tester. The coefficients of friction were lower than 0.1. In contrast with the uncoated tools, the coated tools could be applied in turning hardened CrWMn steel at high speed under industrial conditions without lubricants, and the cutting performances were greatly improved with rather low flank wear and long tool life.  相似文献   

10.
To protect tools and to fulfil the request of good surface quality of the workpiece, it is normally necessary to use solid lubricants like molybdenum disulfide (MoS2) or graphite in warm bulk metal forming. Caused by economical and ecological aspects, it is desirable to avoid lubrication and to substitute it by systems like coatings without the necessity to renew the protecting and lubricating film after every forming process.So called low wear friction coatings like Diamond like Carbon (DLC) are candidates for substituting lubricants or combinations of lubricants and hard coatings like TiN. The advantages of DLC are its high hardness, high Young's modulus and low coefficient of friction. Another important aspect is the property of DLC to graphitise the surface at high pressures, so the coating becomes a kind of self-lubricating. In massive forming at low temperatures like cold extrusion, DLC is applied today.The aim of the work is to show the suitability of DLC as a protective low wear friction coating for warm massive forming, especially for a technique called spin-extrusion. The greatest tribological problems of this forming process are a low sliding velocity and high temperatures in the working zone between tool and workpiece, which can reach a maximum temperature of about 800 °C. Normally, the maximum working temperatures of DLC should be lower than 400 °C when working in air atmosphere. So, the DLC was doped with silicon to raise the maximum working temperature of the coating. Also, the time a-C:H:Si is subjected to this temperature is short, and the air content in the working zone is reduced during the process. The behaviour of a-C:H:Si coated tools during spin-extrusion without additional lubrication of the tool is compared with the forming behaviour of uncoated, but lubricated tools.  相似文献   

11.
《Ceramics International》2021,47(22):31798-31810
The present study investigates the micromechanical properties of ceramic coated WC/Co tools and their influence on wear performance during dry Ti6Al4V turning. Physical and micromechanical characterization have been performed for the evaluation of the PVD coating properties. Higher hardness, elastic modulus, and adhesion strength have been obtained for dual-layer (AlTiN/AlCrN) coated tool than monolayer AlTiN and AlCrN coated tools. Micromechanical properties influence the wear mechanisms in thermally activated and abrasion dominant crater zones. Dual-layer coated tools reduced the flank wear at the corner radius and crater wear by 35–50% and 40%, respectively. Dynamic wear and abrasion-dissolution wear mechanisms have been explored over the tool rake face. Dual-layer coatings have improved wear performance by diminishing delamination, micro-fracturing of WC grains, binder dissolution and fractured interface boundaries.  相似文献   

12.
PTFE coatings were deposited on the Si3N4/TiC ceramic substrate by using spray technology. The surface and cross-section micrographs, adhesive force of coatings with substrate, surface roughness and micro-hardness of the coated ceramics were examined. The friction and wear behaviors of ceramic samples with and without coatings were investigated through carrying out dry sliding friction tests against WC/Co ball. The test results indicated that the coated ceramics exhibited rougher surface and lower micro-hardness, and the PTFE coatings can significantly reduce the surface friction and adhesive wear of ceramics. The friction performance of PTFE-coated sample was affected by applied load due to the lower surface hardness and shear strength of coatings, and the main wear failure mechanisms were abrasion wear, coating delamination and flaking. It can be considered that deposition of PTFE coatings is a promising approach to improve the friction and wear behavior of ceramic substrate.  相似文献   

13.
Nanostructured diamond films were grown to a thickness of approximately 35 µm by a 30 kW, 915 MHz, microwave plasma-assisted chemical vapor deposition (MPCVD) on chemically treated WC–6 wt.% Co tool inserts. Rockwell indentation tests were performed to evaluate the adhesion of the films and compared to that of traditional microcrystalline diamond. A series of high speed dry turning tests on high-silicon (18 wt.% Si) aluminum alloy A390 under continuous and interrupted modes were performed and comparisons were carried out to investigate the wear behavior on tool inserts that were uncoated, coated with nanostructured diamond, and commercial PCD (polycrystalline diamond cutter) ones. The tests showed that nanostructured diamond coatings demonstrated excellent durability against the highly abrasive A390 aluminum–silicon alloys in high speed dry turning. Ultra fine grain structure of this coating produces workpiece surface finish comparable or even better than PCD tools in the range we studied. Excellent coating adhesion of nanostructured diamond on WC–6% Co substrates leads to reliable wear behavior. For the first time, we evaluated the performance of nanostructured diamond film coated insert under high speed interrupted turning mode. A “self-cleaning” mechanism was observed which can significantly improve the performance of nanostructured diamond films. Micro-Raman spectra were taken on tested tools to study the wear mechanism of the coating.  相似文献   

14.
Aluminum alloy 7075 is widely used for producing micro-scale heat sinks, micro-fluidic devices, micro-propellers and so on. This paper deals with optimizing microstructure and thickness of diamond coatings on microdrills used in 7075 aluminum alloy machining. Firstly, the friction tests between microcrystalline diamond (MCD), nanocrystalline diamond (NCD) films and aluminum alloy reveal that the stable coefficient of friction (COF) of MCD–aluminum alloy working pair is 0.240, much higher than that of NCD–aluminum alloy working pair (0.072). The decrease of COF is mainly attributed to the lower roughness of NCD films and the presence of more graphite or the non-diamond phases in NCD coatings. Afterwards, comparative cutting tests involving MCD, NCD, diamond-like coating (DLC) and TiAlN coated microdrills show that after drilling 200 holes, NCD coated microdrills exhibit the best cutting performance. Furthermore, NCD coated microdrills with coating thicknesses of 1 μm, 2 μm, 4.5 μm and 7 μm are fabricated and their cutting performance is studied in aluminum alloy machining. The cutting experiments show that the NCD coated microdrill with coating thickness of 4.5 μm shows the best cutting performance, exhibiting not only lowest flank wear and no tool tipping or chipping on the main cutting edges but also the highest quality of drilled holes because of the outstanding adhesive strength and wear resistance of the NCD coating.  相似文献   

15.
To enhance the tribological performance of Si3N4/TiC ceramics, MoS2/PTFE composite coatings were deposited on the ceramic substrate through spraying method. The micrographs and basic properties of the MoS2/PTFE coated samples were investigated. Dry sliding friction experiments against WC/Co ball were performed with the coated ceramics and traditional ones. These results showed that the composite coatings could significantly reduce the friction coefficient of ceramics, and protect the substrate from adhesion wear. The primary tribological mechanisms of the coated ceramics were abrasive wear, coating spalling and delamination, and the tribological property was transited from slight wear to serious wear with the increase of load because of the lower surface hardness and shear strength. The possible mechanisms for the effects of MoS2/PTFE composite coatings on the friction performance of ceramics were discussed.  相似文献   

16.
In this paper, Al2O3/TiB2 ceramic cutting tools with different TiB2 content were produced by hot pressing. The fundamental properties of these ceramic cutting tools were examined. Dry high-speed machining tests were carried out on hardened steel. The tool wear, the cutting temperature, the cutting forces, and the friction coefficient between the tool and the chip were measured. It was shown that both the wear rates and the friction coefficient at the tool–chip interface of Al2O3/TiB2 ceramic cutting tools in dry high-speed machining of hardened steel were reduced compared with that of in low-speed machining. The mechanisms responsible were determined to be the formation of a self-lubricating oxide film on the tool–chip interface owing to the tribological–chemical reaction by the elevated cutting temperature. The composition of the self-lubricating film was found to be the oxidation product of TiB2 grains, which serves as lubricating additive on the wear track of the tool rake face. The appearance of this self-lubricating oxide film contributed to the improvement in wear resistance and the decrease of the friction coefficient. This action was even more effective with higher TiB2 content. Cutting speed was found to have a profound effect on the self-lubricating behavior. In dry low-speed machining of hardened steel, the Al2O3/TiB2 tools showed mainly adhesive and abrasive wear. While in dry high-speed machining, oxidation wear of the ceramic tools was the dominant mechanism due to the very high cutting temperature. No oxide film was formed on the tool–chip interface while machining in nitrogen atmosphere, and the tool wear resistance was correspondingly decreased.  相似文献   

17.
A WC–12Co coating was sprayed on H13 hot work mould steel using a high velocity oxy fuel (HVOF). The surface and cross–section morphologies, chemical compositions, and phases of obtained coatings were analyzed using a field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS), and X–ray diffraction (XRD), respectively. The friction–wear properties were investigated using a wear test, the wear mechanism of WC–12Co coating was also discussed. The results show that the WC–12Co coating primarily is composed of WC hard phase with high hardness and Co as a binder, which is evenly distributed on the coating surface, no atom–rich zones. There is no W3O phase appearing in the HVOF spraying, showing that the WC–12Co coating has high oxidation resistance, the new phases of W2C and C are produced due to the decarburization of WC. The coating thickness is ~200 μm, which is combined the substrate with the mechanical binding and local micro–metallurgical bonding. The average coefficient of friction (COF) of WC–12Co coating is 0.272, showing good friction performance, the wear mechanism is primarily abrasive wear, accompanied with fatigue wear.  相似文献   

18.
AlTiN-Ni coatings with various Ni contents (0–3?at%) were deposited using cathodic arc evaporation. X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, a nanohardness tester, scratch-adhesion tester, and cutting tester were used to examine the microstructure, mechanical properties, and cutting performance of the coatings. The AlTiN coatings exhibited a columnar structure, while the AlTiN-Ni coatings exhibited a nanocrystal structure due to the formation of nc-AlTiN/Ni nanocomposite coatings. The nanohardness of the AlTiN-Ni coatings decreased from 26.2?GPa to 20.9?GPa as the Ni content increased from 0 to 3?at%. At an Ni content of 1.5?at%, the coating possessed a high toughness and sufficient adhesion strength; however, these dropped drastically for the AlTiN-Ni coating with 3?at% Ni owing to the presence of amorphous Ni. The results for the Inconel 718 turning indicated that the wear mode is adhesion at the rake face, abrasion and adhesion (built-up edge) at the flank face, and chipping at the cutting edge. Compared to AlTiN-Ni3 and AlTiN-coated tools, the lifetime of the AlTiN-Ni1.5 coated tool increased to 160% at a cutting speed of 40?m/min. This was attributed to less adhesion at the rake face and chipping at the cutting edge, due to the nanocrystal structure and higher toughness of the AlTiN-Ni1.5 coating.  相似文献   

19.
As an important ceramic material, tungsten carbide (WC) is utilized as the typical mold in precision glass molding, which has replaced conventional grinding and polishing to provide a highly replicative process for mass manufacturing of optical glass components. Ultra-precision grinding, which is time consuming and has low reproducibility, is the only method to machine such WC molds to high profile accuracy. Although diamond turning is the most widely used machining method for fabrication of optical molds made of metals, diamond turning of WC is still considered challenging due to fast abrasive wear of the diamond tool caused by high brittleness and hardness of WC. Ultrasonic vibration cutting has been proven to be helpful in realizing ductile-mode machining of brittle materials, but its tool life is still not long enough to be utilized in practical diamond turning of optical WC molds. In the current study, a hybrid method is proposed to combine electrochemical processing of WC workpiece surface into the diamond turning process. Cutting tests on WC using poly-crystalline diamond tools were conducted to evaluate its effect on improvement of tool wear and surface quality. Validation cutting tests using single crystal diamond tools has proven that the proposed hybrid method is able to significantly reduce the diamond tool wear and improve the surface quality of machined ultra-fine grain WC workpiece compared to ultrasonic vibration cutting without electrochemical processing.  相似文献   

20.
《Ceramics International》2017,43(12):8999-9004
In this work, CrAlN and TiAlN coatings were produced on silicon nitride cutting inserts via physical vapor deposition. The microstructure and hardness of the coatings, as well as the adhesive strength between the coating and the substrate were studied using a scanning electronic microscope, a micro hardness tester and a scratch tester, respectively. Continuous turning tests of the obtained CrAlN and TiAlN-coated silicon nitride cutting inserts were performed on gray cast iron to evaluate the cutting performances and the machining quality. The results show that the surface hardness of the Si3N4 cutting inserts could be improved by 87% and 50%, respectively, when applying the CrAlN and TiAlN coatings, thereby enhancing the abrasion resistance of the cutting inserts. At different tested cutting speeds, abrasive wear under compressional deformation and adhesive wear were identified as the main failure mechanisms for the two cutting inserts during continuous turning of gray cast iron. The machining quality of the gray cast iron workpieces machined using the uncoated, the CrAlN- or the TiAlN-coated inserts increased with the increment of the cutting speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号