首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Biofiltration of an air stream containing p-xylene has been studied in a laboratory hybrid biofilter packed with a mixture of mature pig compost, forest soil and the packing material which was made of polyethylene (PE) and used in the moving bed biological reactor (MBBR) in wastewater treatment. Three flow rates, 9.17, 19.87 and 40.66 m(3)m(-2)h(-1), were investigated for p-xylene inlet concentration ranging from 0.1 to 3.3 g m(-3). A high elimination capacity of 80 g m(-3)h(-1) corresponding to removal efficiency of 96% was obtained at a flow rate of 9.17 m(3)m(-2)h(-1) (empty bed residence time of 132 s). At a flow rate of 40.66 m(3)m(-2)h(-1) (empty bed residence time of 30s), the maximum elimination capacity for p-xylene was 40 g m(-3)h(-1) and removal efficiencies were in the range of 47-100%. The production of carbon dioxide (P(CO(2))) is proportional to elimination capacity (EC) and the linear relation was formulated as P(CO(2))=1.65EC+15.58. Stable pH values ranging from 6.3 to 7.6 and low pressure drop values less than 0.2 cm H(2)O (19.6 Pa) of packing media in compost-based biofilter of hybrid biofilter were observed, which avoided acidification and compaction of packing media and sustained the activity of microorganism populations.  相似文献   

2.
The deodorization performance of a biofilter and an activated sludge diffusion (AS) system was comparatively evaluated in terms of removal efficiency (RE) and process stability at empty bed residence times (EBRT) ranging from 94 to 32s. Both bioreactors were fed with a synthetic odorous emission containing H(2)S, butanone and toluene at 23.6-43.3, 4.3-6.3 and 0.4-0.6 mg m(-3), respectively. While the outlet H(2)S concentration was always lower than 1.4 mg m(-3), the REs for butanone and toluene remained higher than 95% in both bioreactors regardless of the EBRT. The continuous supply of wastewater in the AS unit did not affect removal and appeared to be a requirement for efficient pollutant abatement. Despite the narrow carbon source spectrum treated, the AS system maintained a large bacterial diversity over time. Therefore, the results obtained confirmed the potential of AS systems as a robust and efficient biotechnology for odour treatment in WWTPs.  相似文献   

3.
In the present work, the main objective was to evaluate a biofiltration system for removing hydrogen sulfide (H(2)S) and volatile fatty acids (VFAs) contained in a gaseous stream from an anaerobic digestor (AD). The elimination of these compounds allowed the potential use of biogas while maintaining the methane (CH(4)) content throughout the process. The biodegradation of H(2)S was determined in the lava rock biofilter under two different empty bed residence times (EBRT). Inlet loadings lower than 200 g/m(3)h at an EBRT of 81 s yielded a complete removal, attaining an elimination capacity (EC) of 142 g/m(3)h, whereas at an EBRT of 31 s, a critical EC of 200 g/m(3)h was reached and the EC obtained exhibited a maximum value of 232 g/m(3)h. For 1500 ppmv of H(2)S, 99% removal was maintained during 90 days and complete biodegradation of VFAs was observed. A recovery of 60% as sulfate was obtained due to the constant excess of O(2) concentration in the system. Acetic and propionic acids as a sole source of carbon were also evaluated in the bioreactor at different inlet loadings (0-120 g/m(3)h) obtaining a complete removal (99%) for both. Microcosms biodegradation experiments conducted with VFAs demonstrated that acetic acid provided the highest biodegradation rate.  相似文献   

4.
Biofiltration of air stream containing mixture of benzene, toluene, ethyl benzene and o-xylene (BTEX) has been studied in a lab-scale biofilter packed with a mixture of compost, sugar cane bagasse and granulated activated carbon (GAC) in the ratio 55:30:15 by weight. Microbial acclimation was achieved in 30 days by exposing the system to average BTEX inlet concentration of 0.4194 gm(-3) at an empty bed residence time (EBRT) of 2.3 min. Biofilter achieved maximum removal efficiency more than 99% of all four compounds for throughout its operation at an EBRT of 2.3 min for an inlet concentration of 0.681 gm(-3), which is quite significance than the values reported in the literature. The results indicate that when the influent BTEX loadings were less than 68 gm(-3)h(-1) in the biofilter, nearly 100% removal could be achieved. A maximum elimination capacity (EC) of 83.65 gm(-3)h(-1) of the biofilter was obtained at inlet BTEX load of 126.5 gm(-3)h(-1) in phase IV. Elimination capacities of BTEX increased with the increase in influent VOC loading, but an opposite trend was observed for the removal efficiency. The production of CO(2) in each phase (gm(-3)h(-1)) was also observed at steady state (i.e. at maximum removal efficiency). Moreover, the high concentrations of nitrogen in the nutrient solution may adversely affect the microbial activity possibly due to the presence of high salt concentrations. Furthermore, an attempt was also made to isolate the most profusely grown BTEX-degrading strain. A Gram-positive strain had a high BTEX-degrading activity and was identified as Bacillus sphaericus by taxonomical analysis, biochemical tests and 16S rDNA gene analysis methods.  相似文献   

5.
The performance of a new, but simply constructed, biofilter system, developed to purify composting exhaust air, was evaluated. The biofilter was packed with mature compost mixed with activated carbon and sludge sourced from a wastewater treatment plant. An alternating air flow system and a bioaerosol reduction device were designed to prevent pressure drop and reduce bioaerosol release. Experimental results demonstrated that satisfactory removal efficiencies of nitrogen-containing compounds, sulfur-containing compounds, fatty acids, total hydrocarbon and odor were achieved at an empty bed retention time (EBRT) of 30s. No significant acidification or alkalinity in the biofilter was observed, and the system was characterized by a small pressure drop and a low level of bioaerosol emission. Denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH) techniques were used to uncover the changes in the bacterial community of the biofilter during the deodorization processes. A minimum of 16 bands were observed in the DGGE profile. Phylogenetic analysis revealed the phylum of Proteobacteria to be predominant, followed by Actinobacteria, Bacteroidetes, and Firmicutes, in descending order. However, the occurrence and predominance of specific bacterial species varied with the environmental conditions of the biofilter. Our results demonstrate - from both an engineering and biological point of view - the feasibility of the biofilter system described herein in purifying the gases derived from composting food waste.  相似文献   

6.
Using UV pretreatment to enhance biofiltration of mixtures of aromatic VOCs   总被引:6,自引:0,他引:6  
Mixtures of airborne toluene and o-xylene, two relatively recalcitrant volatile organic compounds (VOCs), were treated effectively using integrated UV-biofiltration. The set-up consisted of a biofilter receiving UV-pretreated stream and a reference biofilter receiving no pretreatment. Experimental conditions included UV fluences of 6 and 12 mJcm(-2) as well as air flow rates of 6.3 and 9.4 Lmin(-1), corresponding to biofilter empty bed retention times (EBRTs) of 45 and 30s, respectively. The inlet concentration of organics (toluene and o-xylene) ranged between 70 and 650 mg(carbon)m(-3). The UV-biofilter consistently provided removal efficiencies of greater than 95% over the range of toluene and o-xylene inlet concentrations. Also, the coupled UV-biofiltration system provided up to 60% additional contaminant removal compared to the sum of that offered by UV and reference biofilter, demonstrating the synergistic effect of UV on biofilter performance. The UV photooxidation partially oxidized a fraction of toluene and o-xylene into water soluble and more biodegradable intermediates, such as acetaldehyde and formaldehyde, which were readily removed in the downstream biofilter. These intermediates along with up to 20ppmv ozone, formed through the photolysis of oxygen by 185 nm UV, contributed to the enhanced degradation of parent VOCs in the biofilter as well as the absence of any inhibitory effects of the VOCs on one another. Also, the presence of ozone helped control the growth of excess biofilm in the UV-coupled biofilter. While the standalone biofilter showed significant pressure drop increase (of up to 14 mm H(2)Om(-1) of the bed) over the course of experiment, the UV-coupled biofilter maintained a relatively low pressure drop of less than 3 mmH(2)Om(-1) of the bed.  相似文献   

7.
In the present work, biofiltration of xylene vapors has been investigated on a laboratory scale biofilter packed with press mud as filter material inoculated with activated sludge from pharmaceutical industry. Four various gas flow rates, i.e. 0.03, 0.06, 0.09 and 0.12 m(3) h(-1), were tested for inlet xylene concentration ranging from 0.2 to 1.2 g m(-3). The biofilter proved to be highly efficient in the removal of xylene at a gas flow rate of 0.2m(3) h(-1) corresponding to a gas residence time of 2.8 min. For all the tested inlet concentrations, the removal efficiency decreased for high gas flow rates. For all the tested gas flow rates, a decrease in the removal efficiency was noticed for high xylene inlet concentration. The follow-up of carbon dioxide concentration profile through the biofilter revealed that the mass ratio of carbon dioxide produced to the xylene removed was approximately 2.52, which confirms complete degradation of xylene if one considers the fraction of the consumed organic carbon used for the microbial growth.  相似文献   

8.
Candida utilis (C. utilis) growing on sugar cane bagasse complemented with a mineral salt solution was studied for gaseous ethanol removal in a biofilter. Ethanol loads from 93.7 to 511.9 g/h m(3) were used, by varying both inlet ethanol concentration (9.72 to 52.4 g/m(3)) and air flow rate (1.59 x 10(-3) to 2.86 x 10(-3) m(3)/h). At a loading rate of 93.7 g/h m(3), a steady-state was maintained for 300 h. Ethanol removal was complete, and 76.3% of the carbon consumed was found in carbon dioxide. At an higher aeration rate (ethanol load=153.8 g/h m(3)), the biofilter displayed an average removal efficiency (RE) of 70%, and an elimination capacity (EC) of 107.7 g/h m(3). Only 64.4% of the carbon consumed was used for CO(2) production. Acetaldehyde and ethyl acetate in the outlet gas attained 7.86 and 20.4% in terms of carbon balance, respectively. In both cases, the transient phase was less than one day. At a high inlet ethanol concentration (52.4 g/m(3)), no steady-state was observed and the process stopped during the third day. In the three cases, final biomass was poor, ranging from 10.5 to 14.8 mg/g dm. Final pH 4.0-4.6, indicated that acidifying non-volatile metabolites, such as acetate, accumulated in the reactor.  相似文献   

9.
The influence of water irrigation on both the long-term and short-term performance of p-xylene biodegradation under several organic loading scenarios was investigated using an organic packing material composed of pelletised sawdust and pig manure. Process operation in a modular biofilter, using no external water supply other than the moisture from the saturated inlet air stream, showed poor p-xylene abatement efficiencies (≈33 ± 7%), while sustained irrigation every 25 days rendered a high removal efficiency (RE) for a critical loading rate of 120 g m(-3)h(-1). Periodic profiles of removal efficiency, temperature and moisture content were recorded throughout the biofilter column subsequent to each biofilter irrigation. Hence, higher p-xylene biodegradation rates were always initially recorded in the upper module, which resulted in a subsequent increase in temperature and a decrease in moisture content. This decrease in the moisture content in the upper module resulted in a higher removal rate in the middle module, while the moisture level in the lower module steadily increased as a result of water condensation. Based on these results, mass balance calculations performed using measured bed temperatures and relatively humidity values were successfully used to account for water balances in the biofilter over time. Finally, the absence of bed compaction after 550 days of continuous operation confirmed the suitability of this organic material for biofiltration processes.  相似文献   

10.
Styrene gas removal was carried out in a biofilter inoculated with a styrene-degrading Pseudomonas sp. SR-5 using a mixed packing material of peat and ceramic under the non-sterile condition. More than 86% removal efficiency was obtained at styrene load of 5-93 g m(-3) h(-1) for 62 days operation period and 78% carbon of removed styrene was converted to CO2. Thereafter, three kinds of styrene shutdown experiments were conducted: (i) air and mineral medium were supplied for 4 days, (ii) complete shutdown, namely no styrene, air and moisture supply was conducted for 3 days, and (iii) only air was supplied for 11 days. When styrene gas was re-supplied after (i) and (iii) shutdown experiments, styrene removal efficiency rapidly recovered, but after (ii) shutdown, recovery of styrene removal was significantly delayed. Supply of air during shutdown period was found to be enough to resume microbial activity to degrade styrene.  相似文献   

11.
Wei Z  Lin Z  Niu H  He H  Ji Y 《Journal of hazardous materials》2009,162(2-3):837-841
Microwave reactor with ammonium bicarbonate (NH(4)HCO(3)) and zeolite was set up to study the simultaneous removal of sulfur dioxide (SO(2)) and nitrogen oxides (NO(x)) from flue gas. The results showed that the microwave reactor filled with NH(4)HCO(3) and zeolite could reduce SO(2) to sulfur with the best desulfurization efficiency of 99.1% and reduce NO(x) to nitrogen with the best NO(x) purifying efficiency of 86.5%. Microwave desulfurization and denitrification effect of the experiment using ammonium bicarbonate and zeolite together is much higher than that using ammonium bicarbonate or zeolite only. NO(x) concentration has little effect on denitrification but has no influence on desulfurization, SO(2) concentration has no effect on denitrification. The optimal microwave power and empty bed residence time (EBRT) on simultaneous desulfurization and dentrification are 211-280 W and 0.315 s, respectively. The mechanism for microwave reduced desulfurization and denitrification can be described as the microwave-induced catalytic reduction reaction between SO(2), NO(x) and ammonium bicarbonate with zeolite being the catalyst and microwave absorbent.  相似文献   

12.
Exhausted carbon which comes from the H(2)S adsorption process may be a hazardous waste. In this study, exhausted carbon was re-used in biofiltration for H(2)S removal. Two identical columns were used for exhausted carbon (Column A) and fresh carbon (Column B). They were operated in the same mode with 35 ppmv of H(2)S gas at an empty bed residence time (EBRT) of 10s. The results show that the removal efficiency of H(2)S in the two columns was almost identical at 95-100%. The removal mechanisms of H(2)S was explored and explained by developing a mathematical model. The model incorporated mass transfer, biodegradation, adsorption, as well as biofilm growth. The developed model can predict the experimental results very well. The modeled results suggest that the removal of H(2)S in Column A was attributed to the adsorption mechanism much less than in Column B during the start-up stage, while the removal of H(2)S by the biodegradation in Column A was much higher. The removal of H(2)S by the adsorption was significantly affected by the biodegradation. The simulation results also suggest that column A achieved the steady-state biodegradation in a shorter time than in Column B. This could result from higher biomass concentration of biofilm in Column A, due to the extra sulfur source from pre-adsorbed sulfur on exhausted carbon besides H(2)S gas feeding.  相似文献   

13.
Sulfur dioxide pollutant was treated in the laboratory with hydrated lime particles having a mean diameter of 9.1 microm in a continuously operating binary fluidized bed reactor also containing inert sand particles with sizes varying from 500 to 590 microm. The influence of temperature (500, 600, 700 and 800 degrees C) on the reaction medium, of the superficial velocity of the gas (0.8, 1.0 and 1.2 m/s), and of the Ca/S molar ratio (1, 2 and 3) on the SO2 removal efficiency were investigated for an inflow gas concentration of 1000 ppm and an initially static bed height of 10.0 cm. The pollutant removal efficiency proved to depend on the temperature and the velocity of the gaseous flow and was strongly influenced by the Ca/S molar ratio. The maximum efficiency of 97.7% was achieved at a temperature of 700 degrees C, a Ca/S ratio of 3 and a velocity of 0.8 m/s. The lime particles' mean residence time was determined by an indirect method, which consisted of integrating the gas concentration curves normalized with respect to time. Based on a calculation of the critical transition velocities, it was concluded that the reactor operated in a bubbling regime under each condition investigated here.  相似文献   

14.
Evaluation of trickle-bed air biofilter performance for MEK removal   总被引:1,自引:0,他引:1  
A lab-scale trickle-bed air biofilter (TBAB) was operated to evaluate the removal of methyl ethyl ketone (MEK) from waste gas. Three biomass control strategies were investigated, namely, backwashing and two non-use periods (starvation and stagnant). Five volumetric loading rates from 0.70 to 7.04 kg COD/m(3)day were employed. Backwashing once a week removed the excess biomass and obtained long-term, stable performance over 99% removal efficiency for loading rates less than 5.63 kg COD/m(3)day. The two non-use periods could also sustain 99% removal efficiency and could be employed as another means of biomass control for loading rates up to 3.52 kg COD/m(3)day. The non-use periods did not delay the recovery when the loading rate did not exceed 3.52 kg COD/m(3)day. The pseudo-first-order removal rate constant decreased with increase in volumetric loading rate. The effect of non-use periods on removal rate showed apparent transition from positive to negative with the increase in loading rate.  相似文献   

15.
Biofitration was successfully applied to treat air streams containing a mixture of ethyl acetate and toluene. The experiment was performed by two identical bench-scale biofilters, which were acclimated by ethyl acetate and toluene, respectively. During a 3 month steady-state performance, the two biofilters showed equivalent elimination capacity (EC) for toluene (50 g/m(3) bed/h of pure toluene). However, the biofilter acclimated with ethyl acetate showed a much higher EC for ethyl acetate (400 g/m(3) bed/h of pure ethyl acetate) than that acclimated with toluene (250 g/m(3) bed/h). The concurrent biofiltration of toluene was inhibited by the presence of ethyl acetate. The results also showed that more nitrogen and phosphorus were consumed in the process of the biofiltration of toluene compared with the treatment of ethyl acetate. After the 3 month experiment, the pH of the media treating ethyl acetate dropped from 6.71 to 5.50, whereas the pH of the media treating toluene increased from 6.71 to 7.08.  相似文献   

16.
This study examine the feasibility of As(III) removal from aqueous environment by an adsorbent, modified calcined bauxite (MCB) in a continuous flow fixed bed system. MCB exhibited excellent adsorption capacity of 520.2 mg/L (0.39 mg/g) with an adsorption rate constant 0.7658 L/mgh for an influent As(III) concentration of 1mg/L. In a 2 cm diameter continuous flow fixed MCB bed, a depth of only 1.765 cm was found necessary to produce effluent As(III) concentration of 0.01 mg/L, from an influent of 1 mg/L at a flow rate of 8 mL/min. Also, bed heights of 10, 20, and 30 cm could treat 427.85, 473.88 and 489.17 bed volumes of water, respectively, to breakthrough. A reduction in adsorption capacity of MCB was observed with increase in flow rates. The theoretical service times evaluated from bed depth service time (BDST) approach for different flow rates and influent As(III) concentrations had shown good correlation with the corresponding experimental values. The theoretical breakthrough curve developed from constantly mixed batch reactor (CMBR) isotherm data also correlated well with experimental breakthrough curve.  相似文献   

17.
Two biofilters packed with a reticulated polyurethane foam medium were inoculated with a compost-derived enrichment culture grown under acidic conditions (pH 3.0) and then operated over a period lasting 63 days. Both biofilters were supplied with a humidified gas stream containing a five-component mixture of acetone, methyl ethyl ketone, toluene, ethylbenzene, and p-xylene at a total VOC loading rate 80.3 gm(-3)h(-1) to simulate treatment of air emissions resulting from manufacture of reformulated paint. One biofilter was operated under continuous loading conditions and the other received intermittent loading with contaminants supplied only 8 h/day. Nutrient solution with pH 3.0 was supplied approximately once per week to provide nitrogen and other nutrients. Data are presented which demonstrate that undefined mixed cultures acclimated at low pH can successfully treat paint solvent mixtures in biofilters. The biofilter receiving continuous loading reached high overall removal efficiency (greater than 90% overall removal) 3 weeks after startup, and performance increased over time reaching overall removal in the range of 97-99% after 50 days. Performance of the intermittently loaded biofilter developed more slowly, requiring 6 weeks to stabilize at an overall removal efficiency in excess of 90%. In both biofilters, ketone components were more rapidly degraded than aromatic components, and removal of aromatic compounds was somewhat unstable even after 2 months of biofilter operation. Scanning electron microscopy (SEM) revealed that fungi dominated the microbial populations in both biofilters.  相似文献   

18.
Biofiltration of ethylene provides an environmentally friendly and economically beneficial option relative to physical/chemical removal, where selection of appropriate bed material is crucial. Here the vermicompost with indigenous microorganisms as bed material was evaluated for ethylene removal through batch test and biofilter experiment. Temporal and spatial dynamics of bacterial community in the vermicompost-biofilter under different ethylene loads were characterized by culture and denaturing gradient gel electrophoresis (DGGE) methods. The results showed that ethylene was effectively degraded by the vermicompost under conditions of 25-50% moisture content and 25-35 °C temperature. The vermicompost-biofilter achieved nearly 100% ethylene removal up to an inlet load of 11 mg m−3 h−1. Local nitrogen lack of the vermicompost in the biofilter was observed over operation time, but the change of pH was slight. DGGE analysis demonstrated that the bacterial abundance and community structure of vermicompost-biofilter varied with the height of biofilter under different ethylene loads. Pseudomonads and Actinobacteria were predominant in the biofilter throughout the whole experiment.  相似文献   

19.
The paper describes the results of a systematic study of the transient behavior of biofilters treating reduced sulfur pulping odors and VOCs. They were exposed to variations in contaminant loading and periods of starvation. Three bench-scale biofilters with different filter media were used. Filter media materials used were the mixtures of compost/perlite (4:1), hog fuel/perlite (4:1), and compost/hog fuel/perlite (2:2:1). Hydrogen sulfide, the main malodorous gas produced from kraft pulping processes, was used as the test contaminant. The starvation period comprised of two stages: the ‘no-contaminant-loading phase' when only humidified air was passing through the biofilters, and the ‘idle phase' when no air was passing through the biofilters. The response of each biofilter to variations in contaminant mass loading was studied by abruptly changing the concentration and/or flow rate of the inlet waste air stream. Contaminant concentration was continuously measured until a new steady state, for each stage, was achieved. Concentration spikes were applied to study the effects of shock loading on the biofilter removal rates. Biofilters responded effectively to H2S concentration variations and shock loading by rapidly recovering to the original removal rates within 2–8 h. The re-acclimation times to reach full capacity were very short ranging between 15 and 120 h. Extended periods of starvation resulted in longer re-acclimation periods, so does the idle phase as compared to no-contaminant-loading phase.  相似文献   

20.
The biological treatment of a tri-component mixed waste gas system in BRC1 and BRC2 biofilters packed with rock wool-compost media was studied. The model gases were NH(3), H(2)S and toluene. The gases were fed initially at about 50-55 ppm each. H(2)S was found to have the shortest start-up while toluene had the longest. Under two different NH(3):H(2)S:toluene concentration ratios of 250:120:55 and 120:220:55 (in ppm) for BRC1 and BRC2, the removal efficiencies of NH(3), H(2)S and toluene were found to be affected by their respective loading rate. On the other hand, toluene removal was observed to be inhibited at H(2)S concentration of 220 ppm as well. Almost complete removal of NH(3) and H(2)S was achieved when loading rate was applied up to 16.14 g-NH(3)/(m(3) bed h) and 36.09 g-H(2)S/(m(3) bed h), respectively. The maximum elimination capacity for NH(3) was determined to be 23.67 g-NH(3)/(m(3) bed h) at 78.6% removal efficiency and for H(2)S, 38.50 g-H(2)S/(m(3) bed h) at 68.1% removal efficiency. The maximum toluene elimination capacity was 30.75 g-toluene/(m(3) bed h) at 87.9% removal efficiency when the concentration of NH(3):H(2)S:toluene was 250:120:55 in BRC1, and was 16.60 g-toluene/(m(3) bed h) at 45.5% removal efficiency when the concentration of NH(3):H(2)S:toluene was 120:220:55 in BRC2. The pressure drops along both columns were low and the ratio of bed compactions over biofilter height was observed to be less than 0.02.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号