共查询到20条相似文献,搜索用时 80 毫秒
1.
研究终端区航班着陆调度优化控制问题,为对多目标着陆实现实时调度,克服粒子群算法易陷入局部最优的问题,提出了一种免疫思想和禁忌搜索的混合粒子群调度算法,在粒子群算法的基础上引入了免疫系统的抗体浓度调节机制,以保证群体多样性.针对算法后期进化速度慢的缺点,采用了具有自适应能力的禁忌搜索算法进一步优化性能.最后将混合粒子群调度算法在不同规模的实例上进行了测试,并与其它几种具有代表性的算法进行了比较.实验结果表明,改进算法不仅较好地避免了陷入局部最优,提高了收敛速度,还有效地减少了航班着陆调度中的延迟. 相似文献
2.
基于禁忌搜索的自适应粒子群算法 总被引:1,自引:1,他引:1
针对惯性权重线性递减粒子群算法不能适应复杂的非线性优化搜索过程的问题,提出了一种基于Sigmoid函数和.聚集距离变化率改变惯性权重的方法.为了解决算法后期易陷入局部最优的缺点,在算法后期引入了具有记忆能力的禁忌搜索算法.改进后的算法不仅综合了粒子群优化算法的快速性、随机性和全局收敛性的优点,而且还具有禁忌搜索局部寻优的能力.测试函数仿真结果表明,改进后的算法不仅较好地避免了陷入局部最优,而且收敛速度也有提高. 相似文献
3.
4.
针对飞行器航路规划问题,提出了一种改进粒子群算法.在标准粒子群算法的基础上,对惯性权重系数进行了非线性的调整,对学习因子进行线性和非线性的优化,并引入遗传算法中的交叉算子,将较好粒子与较差粒子进行交叉,保证了种群的多样性,从而提高算法的全局搜索能力.为了验证算法的可行性与有效性,对其进行仿真测试.实验结果表明,与标准粒子群算法、线性惯性权重相比,改进的粒子群算法表现出较强的全局搜索能力和较好的收敛性. 相似文献
5.
张锦华 《计算机工程与应用》2012,48(5):29-31
为了提高粒子群算法的寻优速度和精度,提出一种改进的云自适应粒子群算法(MCAPSO)。算法中根据粒子适应度值把种群分为三个子群,分别采用不同的惯性权重生成策略和进化策略,普通子群粒子采用云自适应惯性权重,有效地调整了算法的全局与局部搜索能力。选取了五个基准函数进行测试,与其他PSO算法作了比较。仿真结果表明该方法是有效的。 相似文献
6.
为了提升自动化设备电力调度的评估水平,采用广泛使用的神经网络算法,通过对电力系统参数的重新设置,根据正态分布衰减惯性权重策略对粒子群算法进行了改进和优化。在此基础上,提出正态分布衰减惯性权重的粒子群优化(NDPSO)算法,并利用检测函数分析算法性能。试验结果表明,NDPSO算法最佳正态分布的趋势参数为0.443 3;在Sphere函数上优化结果的最小值为555.31,平均值为2 034.00,标准差为919.58,惯性权重在前期的取值较大。上述结果与其他算法对比都处于领先水平。所设计的算法在保证收敛精度的同时,加快了收敛速度。改进的粒子群算法对神经网络模型具备一定优化能力,能够兼顾全局搜索和局部开发。该研究对电力调度自动化中设备的评估具有重要意义。 相似文献
7.
惯性权重线性递减的线性群粒子算法往往不能反映实际的优化搜索过程。动态粒子群算法虽然能较好地实现非线性的搜索,但是更容易陷入局部最优。提出了基于禁忌搜索的动态粒子群算法,引入了禁忌搜索的思想,来解决动态粒子群算法的容易陷入局部最优问题;并对禁忌公式进行了修改,使其不仅可以解决极小值最优问题,也可以解决极大值最优问题。根据实验结果,改进的算法不仅较好地避免了陷入局部最优,而且收敛速度也有提高。 相似文献
8.
基于改进粒子群算法的BP算法的研究 总被引:4,自引:0,他引:4
针对BP算法的缺陷以及标准粒子群算法优化BP网络权值的不足,为了提高算法的全局搜索能力,提出了基于自适应动态调整惯性权重的粒子群算法的BP网络算法.算法根据适应度值的改变情况来调整惯性权重,使惯性权重的改变不依赖于最大迭代次数和当代迭代次数,从而使整个网络具有较快的收敛速度和较小的误差.将算法应用于海参疾病的诊断中.实验发现,基于自适应动态调整惯性权重的粒子群算法的BP算法比基本粒子群算法的BP算法收敛速度快,算法的准确率也比较高,同时改进算法训练的BP网络也比基本粒子群算法训练的BP网络稳定.仿真证明,自适应动态调整惯性权重的粒子群算法对BP算法的优化优于基本粒子群算法. 相似文献
9.
文章提出一种粒子分层策略和时变学习因子相结合的改进方法。首先,优于平均适应度的这一层粒子采用一种扰动策略自适应惯性权重,劣于平均适应度的这一层粒子采用线性变化惯性权重。其次,采用正弦时变学习因子,动态调整学习因子。最后,通过4标准函数进行仿真实验测试,证明改进算法的有效性。 相似文献
10.
《计算机应用与软件》2017,(10)
为了合理地规划城市电动汽车充电站布局,采用一种基于遗传交叉改进粒子群算法的寻优处理方案。在传统粒子群算法的基础上,引入局部极值对速度更新公式进行优化,采用自适应惯性权重,并且对当前种群的最优解和每个粒子最优解进行交叉操作产生新解。最后通过改进后算法对城市算例进行求解。结果验证了模型的有效性和准确性,表明改进算法在保持全局最优解的同时能提高70%收敛速度,有效降低总成本、提高便利性。 相似文献
11.
针对常规粒子群(PSO)调度算法易早熟的缺点,提出一种基于双策略改进的混合混沌粒子群(HCPSO)算法。将混沌机制引入粒子群更新运动过程当中,使粒子在混沌和稳定之间交替,向最优值运动;在惯性权重变动中引入混沌机制,平衡全局和局部寻优能力。仿真结果表明,该算法能够较好解决作业车间调度问题。 相似文献
12.
13.
一种求解作业车间调度的文化粒子群算法* 总被引:1,自引:0,他引:1
提出了一种文化粒子群算法用于求解置换流水车间调度问题中的最小化最大完成时间。算法设置了群体空间和信念空间两类独立空间,群体空间采用自适应粒子群算法完成进化,信念空间通过更新函数来进行演化。算法中群体空间的粒子群不但通过跟踪个体极值和全局极值来更新自己,实现群体演化,而且通过不断与信念空间中的优秀个体交互,加快群体的收敛速度。该算法在不同规模的问题实例上与其他几个具有代表性的算法的比较结果表明,该算法具有较快的收敛速度,无论是在求解质量还是稳定性方面都优于比较的算法。 相似文献
14.
15.
针对NP-hard性质的作业车间调度问题, 设计了一种改进的离散粒子群优化算法。引入遗传算法交叉算子和变异算子来实现粒子的更新, 并将变异思想和模拟退火算法思想融入该算法中对全局最优粒子的邻域进行局部搜索, 很好地防止了算法出现早熟收敛。通过将该算法和标准粒子群优化算法用于求解典型JSP, 计算结果对比表明, 改进的算法具有很强的全局寻优能力; 就综合解的质量和计算效率而言, 改进算法优于标准粒子群优化算法。同时, 将该算法结果与文献中其他相关算法结果进行比较, 验证了该改进算法的有效性。该算法能够有效地、高质量地解决作业车间调度问题。 相似文献
16.
云计算环境下的资源合理调度是当前的研究热点,针对粒子群优化算法的不足,引入膜计算理论,提出一种基于膜计算改进粒子群优化算法的云资源调度算法(PSO-MC)。对云资源调度问题进行分析,建立云资源调度的目标函数,受到膜计算的启发,将粒子放入膜中,主膜内粒子进行精细化局部寻优,辅助膜内的粒子进行全局搜索,通过膜区域之间信息传递搜索结果,找到云资源调度问题的最优解,在CloudSim平台对算法进行仿真实验。结果表明,PSO-MC算法减少了任务的平均完成时间,提高了任务处理的效率,使云计算资源调度更加合理。 相似文献
17.
针对基本粒子群优化算法(PSO)算法易陷入局部最优的缺点,提出混沌自适应粒子群-序列二次规划算法(CAPSO-SQP)。在基本PSO算法的基础上,加入混沌搜索和自适应惯性权重提高全局收敛能力,并在PSO算法每一代的迭代过程中,引入SQP策略,加快局部搜索并提高对约束优化问题的计算可靠性。测试函数仿真结果表明,CAPSO-SQP算法计算精度高,稳定性好,收敛速度快。将所提出算法应用于悬臂梁结构优化设计,求解结果表明算法在结构优化计算方面的可行性,而且相对于CPSO算法求解更加准确,具有较高的计算可靠性和实用价值。 相似文献
18.
为了解决动态改变惯性权重的自适应粒子群算法不易跳出局部最优的问题,提出了一种自适应变异的动态粒子群优化算法。在算法中引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容易地跳出局部最优。对几种典型函数的测试结果表明,该算法的收敛速度明显优于文献算法,收敛精度也有所提高。 相似文献
19.
针对最小化流水车间调度总完工时间问题,提出了一种混合的粒子群优化算法(Hybrid Particle Swarm Algorithm,HPSA),采用启发式算法产生初始种群,将粒子群算法、遗传操作以及局部搜索策略有效地结合在一起。用Taillard’s基准程序随机产生大量实例,实验结果显示:HPSA通过对种群选取方法的改进和搜索范围的扩大提高了解的质量,在性能上均优于目前较有效的启发式算法和混合的禁忌搜索算法,产生最好解的平均百分比偏差和标准偏差均显著下降,最优解所占比例大幅度提高。 相似文献
20.
针对资源受限的项目调度问题,将粒子群优化算法与拟牛顿优化算法相结合,提出了一种混合粒子群算法。本算法利用粒子群算法求得优化解,然后利用拟牛顿方法对所得到的解进行局部优化,以尽量达到或接近全局最优点。结果表明,本算法能够有效地求解大规模项目调度问题,具有较好的应用价值。 相似文献