首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Structures and functions of the sugar chains of glycoproteins.   总被引:24,自引:0,他引:24  
Most proteins within living organisms contain sugar chains. Recent advancements in cell biology have revealed that many of these sugar chains play important roles as signals for cell-surface recognition phenomena in multi-cellular organisms. In order to elucidate the biological information included in the sugar chains and link them with biology, a novel scientific field called 'glycobiology' has been established. This review will give an outline of the analytical techniques for the structural study of the sugar chains of glycoproteins, the structural characteristics of the sugar chains and the biosynthetic mechanism to produce such characteristics. Based on this knowledge, functional aspects of the sugar chains of glycohormones and of those in the immune system will be described to help others understand this new scientific field.  相似文献   

2.
3.
The structures of N-linked sugar chains of glycoproteins expressed in tobacco BY2 cultured cells are reported. Five pyridylaminated (PA-) N-linked sugar chains were derived and purified from hydrazinolysates of the glycoproteins by reversed-phase HPLC and size-fractionation HPLC. The structures of the PA-sugar chains purified were identified by two-dimensional PA-sugar chain mapping, ion-spray MS/MS analysis, and exoglycosidase digestions. The five structures fell into two categories; the major class (92.5% as molar ratio) was a xylose containing-type (Man3Fuc1 Xyl1GlcNAc2 (41.0%), GlcNAc2Man3Fuc1Xyl1GlcNAc2 (26.5%), GlcNAc1Man3Fuc1Xyl1GlcNAc2 (21.7%), Man3 Xyl1GlcNAc2 (3.3%)), and the minor class was a high-mannose type (Man5GlcNAc2 (7.5%)). This is the first report to show that alpha(1-->3) fucosylation of N-glycans does occur but beta(1-->4) galactosylation of the sugar chains does not in the tobacco cultured cells.  相似文献   

4.
N-Linked sugar chains were liberated by hydrazinolysis from porcine zona pellucida glycoproteins obtained from ovarian follicular oocytes. Neutral sugar chains were separated from acidic ones by paper electrophoresis and fractionated with a serial lectin column chromatography and Bio-Gel P-4 column chromatography. Their structural analysis by sequential glycosidase digestion in combination with methylation analysis revealed that the neutral sugar chains are of bi-, tri-, and tetraantennary complex type with a fucosylated trimannosyl core. Twenty-six percent of the sugar chains contain N-acetyllactosamine repeating structures in their outer chain moieties. Only linear N-acetyllactosamine repeats, the maximum size of which is hexasaccharide, are detected. A characteristic feature is that 39% of the sugar chains contain N-acetylglucosamine residues at their nonreducing termini in spite of the absence of bisected sugar chains. This study provided, for the first time, the substantial information about the sugar chain structures of mammalian zona pellucida glycoproteins.  相似文献   

5.
Our previous study showed that non-reducing terminal galactose residues of N-linked sugar chains present in sheep erythrocyte membrane glycoproteins are important for rosette formation with T lymphoblastic cells [Ogasawara et al. (1995) Immunol Lett 48: 35–38]. As a first step to elucidate the significant structures of sugar chains involved in rosette formation, we analysed N-linked sugar chains released from the membrane glycoproteins by hydrazinolysis. The oligosaccharides were labeled with NaB3H4 and fractionated using columns of Aleuria aurantia lectin-Sepharose, MonoQ and Bio-Gel P-4. Structural analyses of oligosaccharides by sequential exoglycosidase digestion in combination with methylation analysis revealed that the membrane glycoproteins contain bi- (19%), tri- (33%), and tetraantennary (44%) complex-type oligosaccharides and that the oligosaccharides having exposed galactose residues amount to 40% of the total.  相似文献   

6.
Previously, we generated transgenic tobacco BY2 suspension-cultured cells (GT6 cells) that produced human beta1,4-galactosyltransferase. In this study, we analyze the N-glycan structures of glycoproteins secreted from GT6 cells to the spent medium. The N-glycans were liberated by hydrazinolysis, and the resulting oligosaccharides were labeled with 2-aminopyridine (PA). The pyridylaminated glycans were purified by reversed-phase and size-fractionation HPLC. The structures of the PA sugar chains were identified by the combined use of 2D PA sugar chain mapping, MS/MS analysis, and exoglycosidase digestion. The distribution of proposed N-glycan structures of GT6-secreted glycoproteins (GalGNM5 [26.8%], GalGNM4 [18.4%], GalGNM3 [19.6%], and GalGNM3X [35.2%]) is different from that found in intracellular glycoproteins (M7A [9.3%], M7B [15.9%], M6B [19.5%], M5 [1.4%], M3X [6.6%], GalGNM5 [35.5%], and GalGNM3 [11.8%]). In vitro, sialic acid was transferred to sugar chains of extracellular glycoproteins from the GT6 spent medium. The results suggest that sugar chains of extracellular glycoproteins from the GT6 spent medium are candidates for substrates of sialic acid transfer.  相似文献   

7.
Extracellular superoxide dismutase (EC-SOD), the major SOD isoenzyme in biological fluids, is known to be N-glycosylated and heterogeneous as was detected in most glycoproteins. However, only one N-glycan structure has been reported in recombinant human EC-SOD produced in Chinese hamster ovary (CHO) cells. Thus, a precise N-glycan profile of the recombinant EC-SOD is not available. In this study, we report profiling of the N-glycan in the recombinant mouse EC-SOD produced in CHO cells using high-resolution techniques, including the liberation of N-glycans by treatment with PNGase F, fluorescence labeling by pyridylamination, characterization by anion-exchange, normal and reversed phase-HPLC separation, and mass spectrometry. We succeeded in identifying 26 different types of N-glycans in the recombinant enzyme. The EC-SOD N-glycans were basically core-fucosylated (98.3% of the total N-glycan content), and were high mannose sugar chain, and mono-, bi-, tri-, and tetra-antennary complex sugar chains exhibiting varying degrees of sialylation. Four of the identified N-glycans were uniquely modified with a sulfate group, a Lewis(x) structure, or an α-Gal epitope. The findings will shed new light on the structure-function relationships of EC-SOD N-glycans.  相似文献   

8.
Ten oligomannose-type sugar chains (ManGlcNAc2-Man5GlcNAc2) were prepared from various glycoproteins and fluorescence labeled with 2-aminopyridine. The fluorescent pyridylamino (PA)-sugar chains were first separated into five fractions according to their molecular sizes by HPLC on a TSK gel Amide-80 column. Each fraction was then separated into the component PA-sugar chains by reversed-phase HPLC on a Capcell Pak C18 column according to their chemical structures. The method is useful for studying the substrate specificities of alpha-mannosidases with Man5GlcNAc2-PA as a substrate.  相似文献   

9.
Human thrombopoietin (TPO) that regulates the numbers of megakaryocytes and platelets is a heavily N- and O-glycosylated glycoprotein hormone with partial homology to human erythropoietin (EPO). We prepared recombinant human TPO produced in Chinese hamster ovary (CHO) cells and analyzed the sugar chain structures quantitatively using 2-aminobenzamide labeling, sequential glycosidase digestion and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS).We found bi-, tri- and tetraantennary complex-type sugar chains with one or two N-acetyllactosamine repeats, which are common to recombinant human EPO produced in CHO cells. On the other hand, there were triantennary sugar chains with one or two N-acetyllactosamine repeats that were specific to the recombinant human TPO, and their distributions of branch structures were also different. These results suggested that proximal protein structure should determine the branch structure of Asn-linked sugar chains in addition to the glycosyltransferases subset.  相似文献   

10.
Comprehensive analyses of proteins from cells and tissues are the most effective means of elucidating the expression patterns of individual disease-related proteins. On the other hand, the simultaneous separation and characterization of proteins by 1-DE or 2-DE followed by MS analysis are one of the fundamental approaches to proteomic analysis. However, these analyses do not permit the complete structural identification of glycans in glycoproteins or their structural characterization. Over half of all known proteins are glycosylated and glycan analyses of glycoproteins are requisite for fundamental proteomics studies. The analysis of glycan structural alterations in glycoproteins is becoming increasingly important in terms of biomarkers, quality control of glycoprotein drugs, and the development of new drugs. However, usual approach such as proteoglycomics, glycoproteomics and glycomics which characterizes and/or identifies sugar chains, provides some structural information, but it does not provide any information of functionality of sugar chains. Therefore, in order to elucidate the function of glycans, functional glycomics which identifies the target glycoproteins and characterizes functional roles of sugar chains represents a promising approach. In this review, we show examples of functional glycomics technique using alpha 1,6 fucosyltransferase gene (Fut8) in order to identify the target glycoprotein(s). This approach is based on glycan profiling by CE/MS and LC/MS followed by proteomic approaches, including 2-DE/1-DE and lectin blot techniques and identification of functional changes of sugar chains.  相似文献   

11.
A journey to the world of glycobiology   总被引:7,自引:0,他引:7  
Finding of the deletion phenomenon of certain oligosaccharides in human milk and its correlation to the blood types of the donors opened a way to elucidate the biochemical basis of blood types in man. This success led to the idea of establishing reliable techniques to elucidate the structures and functions of the N-linked sugar chains of glycoproteins. N-Linked sugar chains were first released quantitatively as oligosaccharides by enzymatic and chemical means, and labelled by reduction with NaB3H4. After fractionation, structures of the radioactive oligosaccharides were determined by a series of methods developed for the studies of milk oligosaccharides. By using such techniques, structural rules hidden in the N-linked sugar chains, and organ- and species-specific N-glycosylation of glycoproteins, which afforded a firm basis to the development of glycobiology, were elucidated. Finding of galactose deficiency in the N-linked sugar chains of serum lgG from patients with rheumatoid arthritis, and malignant alteration of N-glycosylation in various tumors opened a new research world called glycopathology.However, recent studies revealed that several structural exceptions occur in the sugar chains of particular glycoproteins. Finding of the occurrence of the Gal1-4Fuc1- group linked at the C-6 position of the proximal N-acetylglucosamine residue of the hybrid type sugar chains of octopus rhodopsin is one of such examples. This finding indicated that the fucosyl residue of the fucosylated trimannosyl core should no more be considered as a stop signal as has long been believed. Furthermore, recent studies on dystroglycan revealed that the sugar chains, which do not fall into the current classification of N- and O-linked sugar chains, are essential for the expression of the functional role of this glycoprotein.It was found that expression of many glycoproteins is altered by aging. Among the alterations of the glycoprotein patterns found in the brain nervous system, the most prominent evidence was found in P0. This protein is produced in non-glycosylated form in the spinal cord of young mammals. However, it starts to be N-glycosylated in the spinal cord of aged animals.These evidences indicate that various unusual sugar chains occur as minor components in mammals, and play important roles in particular tissues.  相似文献   

12.
The structure and heterogeneity of carbohydrate chains of hemagglutinin (HA) and neuraminidase (NA), the surface glycoproteins of influenza virus A/Krasnodar/101/59 (H2N2), were investigated. Hemagglutinin was reduced with beta-mercaptoethanol and its heavy (HA1) and light (HA2) chains were separated by gel chromatography. Amino acid and sugar composition of HA1, HA2 and NA was elucidated. The carbohydrate chains of the glycoproteins were cleaved off by the alkaline LiBH4 treatment and oligosaccharides were reduced with NaB[3H]4. They were fractionated by subsequent two-step HPLC on Ultrasphere-C8 and Zorbax-NH2 columns with simultaneous identification using nonlabelled oligosaccharides of known structures. Some of the major oligosaccharides isolated from HA1, HA2 and NA were thus identified as high mannose chains, containing 5-9 mannose residues, and complex chains, first of all biantennary chains having or not having bisecting N-acetylglucosamine and/or fucose residues. The approach which has been developed enables one to study the structure and heterogeneity of carbohydrate chains starting from one nmole of a desialylated N-glycoprotein.  相似文献   

13.
Application of a finger-printing method to the analysis of human milk oligosaccharides led to the finding that several oligosaccharides were missing in the milk of non-secretor or Lewis-negative individuals. This finding helped us in opening the door of elucidating the enzymatic basis of blood types in human. Based on these successful studies, a strategy to establish reliable techniques to elucidate the structures and functions of the N-linked sugar chains of glycoproteins was devised. It was to contrive enzymatic and chemical means to release quantitatively the N-linked sugar chains as oligosaccharides, and finger-print them by using appropriate methods to demonstrate the sugar pattern of a glycoprotein. These methods enabled us to determine that the N-linked sugar chains of glycoproteins can be classified into three subgroups: high mannose-type, complex-type, and hybrid-type. By comparative studies of the sugar patterns of a glycoprotein produced by different organs and different animals, occurrences of organ- and species-specific glycosylation were found in many glycoproteins. By comparative studies of the glycosylation patterns of the subunits constructing human chorionic gonadotropin and other glycoproteins, occurrence of site-directed N-glycosylation was also found, indicating that the processing and maturation of the N-linked sugar chains of a glycoprotein might be controlled by the structure of polypeptide moiety. Furthermore, these methods enabled us to elucidate the structural alteration of the sugar chains of a glycoprotein induced by diseased state of the producing cells, such as rheumatoid arthritis and malignancy. Recent studies of glycoproteins in the brain-nervous system through aging revealed that N-glycosylation of P(0) in the rat spinal cord is induced by aging. Therefore, glycobiology is expanding tremendously into fields such as pathological and gerontological research.  相似文献   

14.
Many recombinant proteins developed or under development for clinical use are glycoproteins, and trials aimed at improving their bioactivity or pharmacokinetics in vivo by altering specific glycan structures are ongoing. For pharmaceuticals of glycoproteins, it is important to characterize and, if possible, control the glycosylation profile. However, the mechanism responsible for the regulation of sugar chain structures found on naturally occurring glycoproteins is still unclear. To clarify the relationship between glycosyltransferases and sugar chain branch structure, we estimated six glycosyltransferases' activities (N-acetylglucosaminyltransferase (GlcNAcTase)-I, -II, -III, -IV, -V, and beta-1,4-galactosyltransferase (GalT)) which control the branch formation on asparagine (Asn)-linked sugar chains in 18 human cancer cell lines derived from several tissues. To visualize the balance of glycosyltransferase activity associated with each cell line, we expressed the relative glycosyltransferase activity in comparison to the average activity among the cell lines. These cell lines were classified into five groups according to their relative glycosyltransferase balance and were termed GlcNAcTase-I/-II, GlcNAcTase-III, GlcNAcTase-IV, GlcNAcTase-V, and GalT. We also characterized the structures of Asn-linked sugar chains on the cell surface of representative cell lines of each group. The branching structure of cell surface sugar chains roughly corresponded to the glycosyltransferase balance. This finding suggests that, for the sugar chain structure remodeling of glycoproteins, attention should be focused on the glycosyltransferase balance of host cells before introducing exogenous glycosyltransferases or down-regulating the activity of intrinsic glycosyltransferases.  相似文献   

15.
The structures of sugar chains from two lectins in seeds of the castor bean (Ricinus communis) were identified. The sugar chains were liberated from the lectins by hydrazinolysis. After N-acetylation, the reducing-end residues of the sugar chains were coupled with 2-aminopyridine. The pyridylamino derivatives thus obtained were purified by gel filtration and HPLC. The structures of the purified derivatives were identified by component sugar analysis, stepwise exoglycosidase digestion, partial acetolysis, and 500 MHz 1H-NMR spectroscopy. A new processing pathway for sugar chains in plant glycoproteins was proposed on the basis of the structures of the sugar chains.  相似文献   

16.
The review briefly describes the structure and function of complex carbohydrates of glycoproteins and proteoglycans both in general and with particular respect to the potential roles sugar chains may play in the cupula, i.e. the molecular organization of these constituents, their biophysical properties, and their biological functions.  相似文献   

17.
Lectins constitute a class of proteins/glycoproteins that specifically bind to terminal glycoside residues. The present investigation aimed to identify lectin-binding sites in developing follicles of Torpedo marmorata. Using eleven lectins (WGA, GSI-A4, GSI-B4, PSA, UEA-I, PNA, MPA, Con-A, DBA, LCA, BPA, SBA), we demonstrated that the biochemical nature and the distribution of carbohydrate residues significantly change during oogenesis in the granulosa cells and the vitelline envelope. In fact, a progressive appearance of surface glycoproteins bearing terminated ss-GlcNAc O-linked side chains was observed in the granulosa during the differentiation of pyriform-like cells from the small ones via intermediate cells simultaneously with a significant reduction of the D-Gal chains present in their nucleus. Glycoproteins bearing ss-GlcNAc O-linked side chains were first evident on the surface of small cells in contact with the oocyte, then on the intermediate ones, and finally on pyriform-like cells. The distribution pattern of such glycoproteins over the differentiated granulosa cells remained unchanged during the subsequent stages of the oocyte growth so granulosa cells preserved the same sugar distribution pattern. Furthermore, a progressive loss of D-Gal residues was evident in the nucleus of granulosa cells. In fact, staining for D-Gal was intense in the nucleus of small follicle cells and progressively reduced till disappearing in differentiated pyriform-like cells. Conversely, the small follicle cells located under the basal lamina were devoid of ss-GlcNAc residues, and the nuclear content in D-Gal remained unchanged. This finding strongly suggests that surface glycoproteins containing ss-GlcNAc residues, and the nuclear content in D-Gal might be related to the differentiation of pyriform-like cells. The present investigation also demonstrates that the content of the sugar residues of the vitelline envelope (VE) changes during oocyte growth, suggesting that pyriform-like cells may contribute to its formation.  相似文献   

18.
The glycoproteins of human erythrocyte membrane have two groups of sugar chains with blood type ABH determinants, which are quite distinct in their molecular sizes. A neutral sugar chain and an acidic sugar chain, which belong to the small size group, were isolated from the glycoproteins obtained from the erythrocyte of blood type O individuals, and their structures were elucidated as Fucalpha1 leads to 2Galbeta1 leads to 3N-acetylgalactosaminitol and Fucalpha1 leads to 2Galbeta1 leads to 3(AcNeualpha2 leads to 6)N-acetylgalactosaminitol, respectively. The molecular weight of the large sugar chains with ABH determinants were estimated to be more than 4000. Both large and small neutral sugar chains of membrane glycoproteins obtained from blood type O erythrocyte could serve as acceptors of alpha-N-acetylgalactosaminyltransferases purified from milk of blood type A1 and A2 individuals, producing the same radioactive sugar chain distribution patterns. However, the acidic sugar chain with the H determinant could not serve as an acceptor of these enzymes.  相似文献   

19.
The structures of sugar chains of a p-nitrophenyl acetate-hydrolyzing esterase from the microsomes of rat liver were established. The enzyme contained mannose and glucosamine as sugar components. Asparagine-linked sugar chains of the esterase were liberated by hydrazinolysis. After N-acetylation of the hydrazinolysate, the reducing ends of the sugar chains were coupled with 2-aminopyridine. Fluorescent pyridylamino (PA-) derivatives of sugar chains thus obtained were purified by gel filtration and reversed-phase HPLC. Eleven PA-sugar chains were obtained. The structures of the PA-sugar chains were first identified by HPLC using two series of separation systems by which 11 PA-oligomannose-type sugar chains with known structures could be separated. Further elucidation of the structures of each PA-sugar chain was performed by exoglycosidase digestions and partial acetolysis. The structures of two of the PA-sugar chains were further confirmed by 500 mHz 1H-NMR spectroscopy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号