首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We investigated whether the occurrence of the flying squirrel, a declined virgin forest species, was accounted for by the structure of the landscape in northeastern Finland We sampled 20 forest areas (1–77 km2 in size) in 1995 for the occurrence of the species using a sampling plot method Landscape structure around occupied and unoccupied areas were compared using seven different radii ranging from 100 m lo 10 km Classified satellite images were analyzed with Geographic Information System (GIS) Ten areas could be determined to be occupied by the flying squirrel Results showed that occupied areas did not deviate from unoccupied ones in total area In unoccupied areas there were more mature pine-spruce forests, and less matrix habitat at the home range scale (100 m and 200 m radii) than in occupied areas Further more, in unoccupied forest areas open habitats (clear-cuts, open fens) were more common than in occupied ones at distances between 200 m and 2 km around sampling plots These differences resulted from both larger mean patch size of and smaller mean nearest neighbor distance between open habitat patches m unoccupied than in occupied forest areas According to a logistic regression analysis, information on the amount of open habitat within 1 km radius alone correctly classified 75% of the areas into occupied and unoccupied ones The probability of the presence of flying squirrel decreases with the increasing amount of open habitat within 1 km The results suggest that increasing the amount of open habitats (e g clear-cutting) at the local scale has a negative impact on the flying squirrel It is obvious that in the present situation where the population has severely declined and its optimal habitat is still diminishing, every patch suitable for the species - whether occupied or not -may be important for the population persistence  相似文献   

2.
Summary The population structure of the spruce grouse (Canachites canadensis) was studied in the Adirondack Mountains of New York, U.S.A. Twenty-five isolated habitat patches exist and are occupied by spruce grouse, with 7 suitable but unoccupied patches existing at the periphery of the range. The regional distribution and abundance of spruce grouse is correlated with the amount of lowland coniferous forest habitat. Unoccupied patches were significantly smaller and significantly farther from occupied patches than were other occupied patches. For all patches, as distance from the nearest occupied patch increased, the percent of occupied patches decreased linearly. I incorporated birth and death rates for spruce grouse into the MacArthur-Wilson survivorship model which closely predicted the proportion of occupied patches for an average population density (2.8 spruce grouse/100ha). For the same demographic parameters, extinction times were calculated which indicate that the 15 habitat patches of a carrying capacity of 3 female spruce grouse (100 ha) would have an average extinction time of less than 6 years. This in part accounts for the high proportion of these patches which are unoccupied. Extinctions and recolonizations of patches were observed during the study. The patterns of patch occupancy can partially be predicted based on their size, spatial arrangement, and the demographic characteristics of the spruce grouse.  相似文献   

3.
We censused breeding birds for three years in natural landscape mosaics of virgin old-growth spruce forest and mire in a large protected forest area in northern Sweden Twenty forest patches, ranging from 0 2 to 17 8 ha in size, were selected in two matrix types, dominated by forest and mire, respectively Patches were very similar with regards to habitat features There was a strong effect of patch area on species richness, but no effect of matrix type Standardization of species richness by rarefaction revealed that small patches (<5 ha) had fewer and large patches (>10 ha) more species than expected Overall distribution of species across patches showed a highly significant nested pattern, indicating that a few habitat generalists occupy all size classes, whereas more demanding species avoid small patches regardless of landscape composition Individual species tended to be distributed evenly across patch classes and no significant edge effect in terms of density of birds was found Our results have bearings on actions to preserve avian diversity in northern boreal forests small patches (<5 ha) provide habitat only for habitat generalists, and therefore larger (>10 ha) patches should be preserved  相似文献   

4.
Abstract Understanding patterns and processes of habitat change is essential for managing and conserving forest fragments in anthropogenically altered landscapes. Digitized aerial photographs from 1944 and 1996 were examined for changes to the indigenous forest landscape in the Karkloof‐Balgowan archipelago in KwaZulu–Natal, South Africa. Attributes relating to proximate land‐use, patch shape, isolation and position in the landscape were used to determine putative causes of forest change. The total change in forest area was ?5.7% (forest covered 6739 ha in 1996). This is contrasted with previous reports for the period 1880–1940 that estimated change in total forest area of up to ?80%. Attrition was the predominant process of forest transformation between 1944 and 1996. Despite little overall change in forest area, 786 mostly small (<0.5 ha) forest patches were lost from the landscape, leaving 1277 forest patches in 1996. An increase in patch isolation, but no change in patch cohesion accompanied the changes in forest area. Ignoring patches that were eliminated, 514 patches decreased in area. This was partly a function of patch size, but the conversion of natural grassland to commercial plantation forestry in the matrix also influenced forest decline. Their small size and irregular shape caused forest patches in the region to be vulnerable to edge effects. Core area declined in a negative exponential way with increasing edge width and the total area of edge habitat exceeded that of core habitat at an edge width of only 50 m. Nevertheless, total core area decreased by only 2% (65 ha) between 1944 and 1996 because most of the eliminated patches were small and contained no core area. The large Karkloof forest (1649 ha) is a conservation priority for forest interior species, but the ecological role and biodiversity value of small forest patches should not be overlooked.  相似文献   

5.
In this paper, we present a model for source–sink population dynamics where the locations of source and sink habitats change over time. We do this in the context of the population dynamics of the North American red squirrel, Tamiasciurus hudsonicus, within a forest environment subject to harvesting and regrowth. Harvested patches of forest are initially sinks, then eventually become source habitat again as the forest regrows. At the same time, each harvested patch is gradually recolonized by squirrels from other forest patches. We are interested in the interaction of forest harvesting dynamics with squirrel population dynamics. This depends on the harvesting schedule, and on the choices squirrels make when deciding whether to settle in a mature forest patch or in a recently harvested patch. We find that the time it takes for a second-growth forest patch to be recolonized at the mature forest level is longer than the time required for the habitat quality to be restored to the mature forest level. We also notice that recolonization pressure decreases squirrel populations in neighbouring patches. The connectivity between forest patches and the cutting schedule used also affect the time course of recolonization and steady-state population levels.  相似文献   

6.
Studies of the effects of patch size and isolation on plant species density have yielded contrasting results. However, much of the available evidence comes from relatively recent anthropogenic forest fragments which have not reached equilibrium between extinction and immigration. This is a critical issue because the theory clearly states that only when equilibrium has been reached can the number of species be accurately predicted by habitat size and isolation. Therefore, species density could be better predicted by patch size and isolation in an ecosystem that has been fragmented for a very long time. We tested whether patch area, isolation and other spatial variables explain variation among forest patches in plant species density in an ecosystem where the forest has been naturally fragmented for long periods of time on a geological scale. Our main predictions were that plant species density will be positively correlated with patch size, and negatively correlated with isolation (distance to the nearest patch, connectivity, and distance to the continuous forest). We surveyed the vascular flora (except lianas and epiphytes) of 19 forest patches using five belt transects (50×4 m each) per patch (area sampled per patch = 0.1 ha). As predicted, plant species density was positively associated (logarithmically) with patch size and negatively associated (linearly) with patch isolation (distance to the nearest patch). Other spatial variables such as patch elevation and perimeter, did not explain among-patch variability in plant species density. The power of patch area and isolation as predictors of plant species density was moderate (together they explain 43% of the variation), however, a larger sample size may improve the explanatory power of these variables. Patch size and isolation may be suitable predictors of long-term plant species density in terrestrial ecosystems that are naturally and anthropogenically fragmented.  相似文献   

7.
We studied the space use of the Siberian flying squirrel in fragmented forest landscapes in southern Finland in 1996- 1999. Twenty-four adult males and 23 adult females were radio trucked in three different study areas. The use of different landscape elements by flying squirrels was compared to their availability using compositional analysis. Effects of fragmentation on flying squirrels were studied by comparing the use of different habitat types, number of used patches, and size of home range to the principal components formed from the landscape variables patch size, patch isolation, area of spruce-dominated forests, and area of other habitats with trees.
Flying squirrels preferred spruce- and deciduous-dominated forests, but other habitats with trees were also used for moving and foraging. These less preferred habitats connected spruce and deciduous forest patches in a matrix of open areas. Males used several separate patches of preferred habitat, but females usually stayed in one patch. The spacing behaviour of males was affected by the structure of the landscape in a way that home ranges were larger and males used more spruce patches in the more highly fragmented landscape. Home-range size of females was not affected by the landscape structure. Basically, the space use of males seemed lo be reflected by the location and number of female home ranges. In the study area where female density was high, the home ranges of males were small. Our results give empirical evidence of the effects of habitat loss and landscape connectivity for the Siberian flying squirrel and the implications of these for the conservation of the species.  相似文献   

8.
《Ecography》2003,26(5):641-651
Elements of the landscape, such as patches of preferred habitat, matrix between patches, and corridors linking patches, differ as movement habitat for animals. To understand how landscape structure influences the movement and thus, population dynamics of animals, clear empirical knowledge on patterns of movement is needed. The Siberian flying squirrel inhabits spruce-dominated boreal forests from Finland to eastern Siberia. Numbers of flying squirrels have declined severely in Finland in past decades, probably due to modern forestry. We studied the movement of radio-collared adult flying squirrels in preferred (spruce forest) and in matrix habitat (open areas and other habitats with trees) in Finland 1997–2000, and determined whether the woodland strips connecting patches of preferred habitat could function as ecological corridors for flying squirrels.
Flying squirrels used woodland strips for inter-patch movements, but also used matrix with trees and were able to cross narrow open gaps. Males moved longer total distances and crossed edges more often than females. Males used matrix habitats for movement between spruce patches, and moved faster and more directly in the matrix than in the spruce forest. Females seldom changed spruce patches, but instead used the matrix for foraging. For both sexes probability of leaving the spruce forest patch correlated negatively with the size of the patch, but the type of connection the patch had to other patches did not affect the leaving probability. Due to efficient movement abilities of the flying squirrel and forest-dominated landscape structure of southern Finland, we suggest that conservation acts for maintaining viable populations of flying squirrels should focus on the quality of managed forest and the area of suitable breeding habitat (i.e. on habitat loss), but not necessarily on ecological corridors.  相似文献   

9.
ESA HUHTA  JUKKA JOKIMAKP  PEKKA RAHKO 《Ibis》1998,140(2):214-222
We studied habitat choice, distribution and reproductive success in the Pied Flycatcher Ficedula hypoleuca in relation to the spatial structure of a fragmented forest area. Two hierarchical levels of forest habitat structure were used: (1) forest patch size (macrohabitat) and (2) vegetative structure within forest patches (microhabitat). In spring, both males and females settled preferentially in large and medium-sized forest stands (>1 ha) where breeding density was also higher than in small stands (<1 ha). Stands <5 ha were occupied later, and the proportion of unpaired males was higher there than in large stands (>5 ha). The known age distributions of breeding birds and breeding success were independent of forest patch size. Nest predation rate was not associated with stand size or nest distance from the forest edge. The preference of breeding birds for large forest patches was presumably related to the higher amount of resources (nest sites, mates, food) a large patch can offer for reproduction compared with a small patch. At the microhabitat level, territories of old males were characterized by relatively more deciduous trees that contained more invertebrate food than coniferous tree-dominated territories of yearling males. The reproductive success of old males, as measured by the number of fledged young per male, was higher than that of yearling males. This suggests that the larger body size and blacker plumage of old males possibly contributed to male dominance and that old males excluded younger males from preferred habitats through territorial behaviour. Our results suggest that habitat choice of the Pied Flycatcher was affected by both micro- and macrohabitat. On the basis of settlement pattern, density and reproductive success, the distribution of Pied Flycatchers across forest stands of different sizes followed the ideal-free distribution model, whereas at the microhabitat level, age-related unequal distribution of males followed the ideal-despotic model of Fretwell and Lucas.  相似文献   

10.
Ability to predict species distribution in a landscape is of crucial importance for natural resource management and species conservation. Therefore, the understanding of species habitat requirements and spatio-temporal dynamics in occurrence is needed. We examined patch occupancy patterns of the Siberian flying squirrel Pteromys volans in northern Finland across a seven year study period. Forest patches dominated by mature spruce ( Picea abies ) in a study area (375 km2) were surveyed to monitor the presence or absence of the flying squirrel. The patch occupancy pattern was dynamic: about half of the habitat patches were occupied at least once during the study period and more patches were colonised than were abandoned. Patches that were continuously occupied (i.e. occupied during all sample periods) were typically of high quality (based on habitat and landscape characteristics), continuously unoccupied patches were usually of low quality, and intermediate quality patches were occupied intermittently. The variables explaining patch occupancy were similar each year, and a statistical model based on data from the year 2000 also predicted occupancy in 2004 with similar accuracy. However, data from a single survey were inadequate for identifying patches used intermittently by flying squirrels. Despite inconsistent occupancy, these patches may be important for the local persistence of flying squirrels. The dynamic occupancy pattern may thus affect estimates of suitable habitat area and identification of functional patch networks for landscape planning. These results emphasise the need for follow-up studies to better understand population patterns and processes in time.  相似文献   

11.
Conservation of forest birds in fragmented landscapes requires not only determining the critical patch characteristics influencing local population persistence but also identifying patch networks providing connectivity and suitable habitat conditions necessary to ensure regional persistence. In this study, we assessed the importance of patch attributes, patch connectivity, and network components (i.e., groups of interconnected patches) in explaining the occupancy pattern of the Thorn-tailed Rayadito (Aphrastura spinicauda), a forest bird species of central Chile. Using a daily movement threshold distance, we identified a total of 16 network components of sclerophyllous forest within the study area. Among those components, patch area and vegetation structure-composition were important predictors of patch occupancy. However, the inclusion of patch connectivity and component size (i.e., the area of a network component) into the models greatly increases the models’ accuracy and parsimony. Using the best-fitted model, a total of 33 patches were predicted to be occupied by rayaditos within the study area, but such occupied patches were distributed in only six network components. These results suggest that persistence of rayaditos in central Chile requires the maintenance of large single patches and patch networks providing habitat and connectivity.  相似文献   

12.
The North American red squirrel ( Tamiasciurus hudsonicus ) has expanded its range into the central hardwoods of the United States in conjunction with increasing forest fragmentation and declining gray squirrel ( Sciurus carolinensis ) populations. We used translocation experiments and patch occupancy data to test for interspecific differences in mobility and sensitivity to habitat loss and modification by agriculture. We released squirrels in fencerows to test the hypothesis that gray squirrels display inferior mobility relative to red and fox ( S. niger ) squirrels. Elapsed time to movement from fencerows for 76 individuals increased with distance to forest patches and harvesting of crops. Gray and red squirrels took longer to move from fencerows than fox squirrels, and gray squirrels were less successful at moving from fencerows than red and fox squirrels. Ecologically scaled landscape indices revealed the degree to which interspecific differences in mobility and individual area requirements accounted for the occurrence of these species across landscapes. Gray squirrel distribution was constrained both by individual area requirements and dispersal ability. Occurrence of red and fox squirrels was related to patch size but was unaffected by landscape connectivity.  相似文献   

13.
A major conclusion of studying metapopulation biology is that species conservation should favor regional rather than local population persistence. Regional persistence is tightly linked to size, spatial configuration and quality of habitat patches. Hence it is important for the management of endangered species that priority patches can be identified. We developed a predictive model of patch occupancy by capercaillie, a threatened grouse species, based on a single snapshot of data. We used logistic regression to predict patch occupancy as a function of patch size, isolation, connectivity, relative altitude, and biogeographical area. The probability of a patch being occupied increased with patch size and increasing altitude, and decreased with increasing distance to the next occupied patch. Patch size was the most important predictor although occupied patches varied considerably in size. Our model only uses data on the number, size and spatial configuration of habitat patches. It is a useful tool to designate priority areas for conservation, i.e. large core patches with high resilience in habitat quality, smaller island‐patches that still have high probability of being inhabited or becoming recolonised, and patches functioning as “stepping stones”. If capercaillie is to be preserved, habitat suitability needs to be maintained in a functional network of patches that account for size and inter‐patch distance thresholds as found in this study. We suggest that similar area‐isolation relationships are valid for almost any region within the distribution range of capercaillie. The thresholds for occupancy are however likely to depend on characteristics of the respective landscape. The outcome of our study emphasises the need for future investigations that explore the relationship between patch occupancy, matrix quality and its resistance to dispersing individuals.  相似文献   

14.
For two consecutive years we registered the presence (or absence) of blue winged grasshoppers (Oedipoda caerulescens; Linnaeus, 1758) on 312 habitat patches of differing size in a region of more than 3000 ha. The data show that presence of grasshoppers on a habitat patch is dependent on patch size as well as on patch isolation. We used an ecological incidence model to describe the metapopulation dynamics of the regional population and derived the parameters for this model from presence-absence data and observations of Oedipoda dispersion. The analysis shows that local extinction of grasshopper populations is influenced by strong fluctuations of environmental conditions and that for a number of small patches in our region recolonization is important for the presence of O. caerulescens. Colonization probability, as derived using the incidence model, is in good agreement with estimates from a population genetical analysis.  相似文献   

15.
《Acta Oecologica》1999,20(1):39-49
Three main causal hypotheses have been proposed to explain the inverse relationships between habitat patch size and density of generalist mouse species in fragmented habitats: 1) enhanced habitat conditions as habitat patch size decreases; 2) inhibited emigration of excess individuals in small and isolated habitat patches; and 3) reduced territoriality in small patches because they are occupied temporarily by nonreproductive individuals. From the mechanism underlying each hypothesis, we derived predictions on the effects of fragment size on the body condition of individuals (measured both as absolute body size and as body mass relative to body size) and some demographic parameters of mouse populations related to reproductive output (sex-ratio and proportions of sexually active and recently-born individuals), and we tested such predictions with data from wood mice Apodemus sylvaticus wintering in three Spanish forest archipelagos in which the inverse relationship between forest patch size and mouse abundance had been previously proven. No differences in average body size or in average body mass relative to body size were detected among fragments. Mouse populations wintering in small fragments showed more male-biased sex-ratios, a larger proportion of sexually active adults and fewer juveniles as compared to mouse populations wintering in large fragments nearby. Results clearly rejected the third hypothesis and did not support the second one. It thus seemed that habitat conditions for mice improved as forest fragment size decreased, although the expected positive effects on individuals could have been prevented by relaxed territoriality and increased food resource depletion by denser mouse populations. Bearing in mind the negative effects of dense wood mice populations on the distribution, abundance and population dynamics of forest species, this apparent enhancement of habitat conditions for mice in small forest fragments could have far-reaching consequences for the long-term persistence of such fragments.  相似文献   

16.
In fragmented landscapes, changes in habitat availability, patch size, shape and isolation may affect survival of local populations. Proposing efficient conservation strategies for such species relies initially on distinguishing the particular effects of those factors. To address these issues, we investigated the occurrence of 3 bird species in fragmented Brazilian Atlantic Forest landscapes. Playback techniques were used to collect presence/absence data of these species inside 80 forest patches, and incidence models were used to infer their occupancy pattern from landscape spatial structure. The relative importance of patch size, shape and surrounding forest cover and isolation was assessed using a model selection approach based on maximum likelihood estimation. The presence of all species was in general positively affected by the amount of surrounding habitat and negatively affected by inter‐patch distances. The joint effects of patch size and the surrounding landscape characteristics were important determinants of occupancy for two species. The third species was affected only by forest cover and mean patch isolation. Our results suggest that local species presence is in general more influenced by the isolation from surrounding forests than by patch size alone. We found evidence that, in highly fragmented landscapes, birds that can not find patches large enough to settle may be able to overcome short distances through the matrix and include several nearby patches within their home‐ranges to complement their resource needs. In these cases, patches must be defined as functionally connected habitat networks rather than mere continuous forest segments. Bird conservation strategies in the Atlantic forest should focus on increasing patch density and connectivity, in order to implement forest networks that reduce the functional isolation between large remnants with remaining core habitat.  相似文献   

17.
Despite increasing awareness of the theoretical importance of habitat dynamics on metapopulations, only a few empirical studies have been conducted. We aimed to increase our understanding of how patch size, dynamics and connectivity affect colonization–extinction dynamics and the occurrence patterns of a beetle (Stephanopachys linearis), which breeds only in burned trees, existing as dynamic habitat patches that have become rare in managed forest landscapes. We assessed species’ presence/absence twice in all known habitat patches (i.e. > 1 ha sites where forest fires had occurred during the previous 2–15 yr) in a 200 × 150 km region of central Sweden, dominated by managed boreal forest. Evaluated over six years, the colonization rate was 47% and the local extinction risk was 65%. Probability of colonization increased with patch size (number of suitable trees in a site) and connectivity to occupied patches within 30 km, and decreased with increasing time since fire. Local extinction risk decreased with habitat patch size but increased, unexpectedly, with connectivity. Occurrence increased with patch size and decreased with increasing time since fire. At a regional scale, S. linearis tracks the fire dynamics by colonising sites with burned trees and by becoming extinct at rates which make the species rare at sites where burnt trees are more than eight years old. In managed boreal forest landscapes, a large proportion of sites may be created by prescribed burning (in our study area: 82%), and consequently human decisions strongly affect the future amount of habitat for fire‐dependent species and its spatial distribution. Stephanopachys linearis uses burned sites more often if more trees are retained and, to some extent, if sites are concentrated in those parts of a region that already support high population densities of the species.  相似文献   

18.
The occurrence pattern of the marsh fritillary was studied within a patch network on the Baltic island Öland, Sweden. Presence/absence was established for potentially suitable habitat patches (n = 158) on calcareous moist grassland and analyzed in a multiple logistic regression model where patch area, patch isolation and nine habitat quality variables were included as explanatory variables. Larval food plant density was positively, and patch isolation negatively, correlated to the presence of Euphydryas aurinia. Area did not contribute to the explanation of the occurrence pattern. Significant interactions between larval food plant density times patch isolation, and larval food plant density times vegetation height, show that with low food plant density the butterfly primarily occurs in patches with a vegetation height of 4–10 cm, within a distance of 250 m from nearest occupied patch. In patches with a high food plant density the butterfly occurs in patches where the vegetation height is higher, 4–16 cm, and the distance to nearest occupied patch can be longer, up to 1.4 km. This study supports earlier findings in other regions, suggesting that a network of adjacent patches with a high food plant density and a vegetation height within the preferred threshold, despite their size, is an apparent conservation goal.  相似文献   

19.
Recent studies on butterflies emphasize habitat characteristics together with metapopulation parameters (patch area and isolation) giving a more thorough understanding of processes influencing population persistence and patch occupancy, than either of them alone. We studied a coastal and an archipelago population of the Apollo butterfly (Parnassius apollo) in SW Finland. Larvae were surveyed for four years in both populations. Counting larvae on three consecutive days and temporarily removing them tested the survey accuracy. The removals showed four times higher larval abundance in the archipelago than on the coast. Survey methods were reliable, provided that empty patch status was not based on single visits only, if larval abundance was low. On the coast, large patches, and patches with high host-plant abundance were often occupied. In the archipelago, patches rich in host-plant were often occupied whereas patch area did not affect patch occupancy. In both populations, the probability of patches being occupied for three consecutive years increased with increasing host-plant abundance and patch area. Conservation of P. apollo depends on securing host-plant abundance on large enough patches in both study systems. In these systems, even crude habitat measures prove useful for understanding ecological processes behind observed patterns.  相似文献   

20.
Åke  BERG 《Ibis》1992,134(4):355-360
Territory establishment and habitat use by breeding Curlews Numenius arquata were studied during 1987 and 1988 on mosaic farmland (dominated by dry tillage) at two sites in central Sweden. Curlews preferred to breed in areas with a high proportion of grassland, close to rivers, while dry tillage was avoided. Territories at my study site were larger (mean = 4 5.2 ha) than in areas consisting entirely of grassland. Territory size seemed to depend on the spatial distribution of grasslands, which suggests that habitat fragmentation forces Curlews to establish larger territories in modern farmland than in areas of grassland. The number of territories in patches of grassland was correlated with patch area, and unoccupied patches were more isolated than occupied patches. However, patch area was a more important factor than isolation, since large patches (> 3 5 ha) were always occupied. Sown grassland was used significantly more than expected for foraging early in the season, possibly indicating the strong influence of the nutritional requirements in the pre-breeding period on territory establishment. Habitat selection when foraging seemed to be less important late in the season, since there was no significant habitat preference then. During this period distance to the nest site seemed to be more important than habitat, sinced the preferred foraging fields (including fields of all habitats used more than expected by area) were situated closer to nests than the less preferred fields, probably an adaptation to the high nest predation risk. The same fields were mostly preferred in the pre-breeding period also, suggesting that nests were built close to good foraging areas.
My results indicate that the decline of the Swedish Curlew population since 1950 is caused by changes in land use, resulting in decreased grassland area and increased habitat fragmentation, which probably have affected both breeding and foraging possibilities negatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号