首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了提高支管射流三通水力性能,改善滴灌的灌水均匀性,基于CFX数值模拟技术,对进口宽度为15 mm的支管射流三通进行结构优化.选取位差、劈距、劈尖半径和侧壁倾角为影响因素,通过四因素三水平正交设计了9组模型,边界条件设定为进口压力100 kPa.选取支管射流三通出口设计流量为评价标准,支管射流三通最优结构尺寸为位差5.5 mm、劈距113 mm、劈尖半径13 mm、侧壁倾角10°.此结构尺寸参数下的支管射流三通水力性能试验结果表明:在进口水压为100 kPa时,支管射流三通脉冲频率为148次/min,水头压力振幅为37.9 kPa,水头压力损失为16.7 kPa,出口流量为0.698 L/s;支管射流三通所接滴灌带长度为60 m时,与普通支管三通相比,支管射流三通的灌水均匀系数提高了2.78%,流量偏差率降低了4.72%.该研究可为射流技术在脉冲滴灌系统的研究、开发与应用提供理论依据.  相似文献   

2.
射流脉冲三通毛管灌水均匀性试验研究   总被引:2,自引:0,他引:2  
为了提高低压滴灌系统灌水均匀性,基于附壁与切换原理发明了射流脉冲三通发生器,试验研究了不同压力工况下脉冲频率、脉冲振幅2种因素对灌水均匀系数、流量偏差率的影响,并分析了脉冲条件下毛管铺设长度和进口压力对灌水均匀性的影响.结果表明:在毛管铺设长度相同时,不同低压下射流脉冲三通灌水均匀系数的平均值比普通三通提高了0.65%,流量偏差率明显低于普通三通,平均降幅为3.62%;低压条件下产生脉冲频率高于200次/min,脉冲振幅高于2.5 m;相同压力条件下,灌水均匀系数随毛管铺设长度的增大而降低,流量偏差率随毛管铺设长度的增大而显著增大;毛管铺设长度相同时,灌水器流量随进口压力增大而增大,进口流量也会随之增大.  相似文献   

3.
为了探究滴灌带沿程水力性能的变化规律,在射流三通进口流量为0.1~1.2 m3/h的范围内,开展射流三通进口流量与出口水头振幅的水力性能试验,发现射流三通连接脉冲滴灌系统的流量阈值为0.2~0.8 m3/h;在脉冲滴灌系统流量阈值的范围内,开展射流三通连接滴灌带沿程脉冲参数试验,研究射流三通连接60 m滴灌带沿程脉冲性能的变化规律,发现当滴灌带进口水头振幅大于1 m时,沿程水头振幅的衰减速率存在突变点,沿程脉冲频率先增大后减小,射流三通在整条滴灌带上均能产生脉冲水流的进口流量设计范围是0.5~0.8 m3/h.在射流三通进口流量的设计范围内,开展稳压滴灌和脉冲滴灌的同台对比试验,结果表明,射流三通连接滴灌带内的水头损失比普通三通连接滴灌带内的降低62.5%~83.3%,灌水均匀系数提高了0.6%~0.9%,流量偏差率降低了1.2%~4.1%;进口流量为0.7 m3/h时,射流三通连接滴灌带灌水均匀度最高.  相似文献   

4.
为了提高毛管射流三通的脉冲特性,采用正交设计方法,选取喷嘴宽度、喷嘴深度、控制管宽度、位差、劈距、侧壁夹角6个因素,每个因素取5个水平参数,设计了共25组不同结构的毛管射流三通模型.采用CFX数值模拟技术,对25组三通模型进行模拟计算.以脉冲频率、水头振幅和压差作为试验评价指标,通过极差法分析了结构参数对脉冲特性的影响规律,确定影响各因素的主次顺序;利用方差法确定影响因素显著特性,确定最优结构尺寸模型.经过试验验证,结果表明在进口压力为50~120 kPa下,与4 mm喷嘴宽度射流三通相比,优化模型射流三通脉冲频率提高了3~10次/min,水头振幅(压力)提高了3.2~11.1 kPa,灌水均匀系数提高了0.53%~1.94%,流量偏差率降低了0.81%~5.33%.优化射流三通模型可提供持续稳定脉冲水流,脉冲特性得到较大提高,可有效改善灌水均匀度.  相似文献   

5.
基于射流脉冲原理,设计并加工了一种结构简单的射流脉冲三通,能够利用射流反馈振荡技术在滴灌带内形成脉冲水流,有益于提高滴灌系统的灌水均匀度,降低流量偏差率。在分析射流脉冲三通工作原理的基础上,通过水力性能试验,分析射流脉冲三通进口压力与振幅及出口流量的关系,研究滴灌带对射流脉冲三通振荡水流的响应特性,并对滴灌带脉冲频率、振幅与灌水均匀度及流量偏差率进行了试验研究,与相同条件下的普通三通作了试验对比。结果表明,射流脉冲三通2个出口能够产生强烈的振荡水流,并可在滴灌带内形成具有一定脉冲频率与振幅的脉冲水流,在20~80kPa工作压力下,与普通三通相比,灌水均匀度提高0.75%~1.99%,流量偏差率降低3.73%~10.76%。  相似文献   

6.
基于CFX数值模拟技术,对射流脉冲三通的内部结构进行设计.首先通过控制变量法,得到了射流三通的稳定振荡区间,其中各关键结构参数的设计范围分别为分流劈距20~45 mm,位差1.1~2.1 mm,侧壁倾角6°~16°.在该结构范围内进行4因素3水平正交试验设计,4组因素分别为位差比、侧壁倾角、劈距比、喷嘴深宽比,3组水平分别为脉冲频率、水头振幅和流量振幅,得到了各因素对性能指标的影响主次顺序和最优模型设计方案.对比优化模型与普通模型的脉冲效果,模拟结果表明优化模型的脉冲频率提高了0~2.5 Hz,水头振幅提高了0~20 kPa.对普通三通和射流三通的脉冲效果进行水力性能试验,其中射流三通的脉冲频率为2.0~4.0 Hz,比模拟结果偏小,水头振幅为17~53 kPa,比模拟结果偏大.与普通三通相比,不同压力条件下,射流三通的单侧出口流量均较大,说明射流三通能够提供稳定的脉冲水流.  相似文献   

7.
射流三通对灌水器抗堵塞特性的影响   总被引:1,自引:0,他引:1  
为探明射流三通应用射流附壁与切换技术形成的脉冲水流对滴灌灌水器抗堵塞能力的影响和原因,采用筛分法,分选出6种小于0. 1 mm的泥沙粒径段,配置成3种泥沙级配组合和0. 5、1. 0、1. 5 g/L含沙量浑水,总进口压力为0. 1 MPa,分析射流三通和普通三通条件下滴灌测试系统的抗堵塞特性。结果表明:射流三通产生脉冲振幅为27 k Pa和振荡频率为236次/min左右的脉冲水流,对粒径为0. 03~0. 05 mm和0~0. 03 mm的泥沙抗堵塞能力较为显著,对粒径为0. 05~0. 10 mm的泥沙颗粒随着含沙量的增大抗堵塞能力呈减弱趋势;射流三通测试系统发生堵塞的灌水次数平均比普通三通测试系统多3~8次;不同含沙量下射流三通测试系统相对平均流量和灌水均匀性都高于普通三通,射流三通产生的高频脉冲水流是灌水器抗堵塞能力强于普通三通的主要因素。  相似文献   

8.
为探究支、毛管射流三通组合的水力特性,用支管射流三通、普通支管三通与毛管射流三通、普通毛管三通组成了4组灌水小区,对不同总进口压力水头(9.5、12、14、15.5 m水头)和不同滴灌带长度(60、70、80 m)下的射流三通组合进行水力性能研究。试验结果表明:总进口压力相同时,连接射流三通的滴灌灌水器的平均流量要小于普通三通;进口压力和滴灌带长度相同时,Ⅰ号灌水小区灌水均匀度最高,Ⅳ号灌水小区灌水均匀度最低,且Ⅰ号灌水小区灌水均匀系数比Ⅳ号提高了2.56%~3.32%,流量偏差率降低了5.06%~8.20%;滴灌带长度相同时,4种灌水小区灌水均匀系数随进口压力的增大整体呈上升趋势;进口压力相同时,灌水均匀系数随滴灌带长度的增加而减小。该研究结果为新型灌水小区的开发与应用提供理论基础。  相似文献   

9.
【目的】探究支管射流三通与毛管射流三通组合下灌水系统的水力性能。【方法】根据3种支管射流三通进口压力水头(10、12、14 m)和3种滴灌带单侧铺设长度(60、70、80 m)设置9组试验,建立了射流三通水头振幅、脉冲频率、进口流量与水头损失的非线性拟合关系式,并分析了不同射流三通组合对灌水系统灌水均匀度的影响。【结果】水头振幅与水头损失、脉冲频率与水头损失均呈对数函数关系,流量与水头损失呈线性函数关系,且相对误差均小于1%;当支管毛管均采用射流三通时,灌水系统的灌水均匀系数提高了0.43%~0.92%,流量偏差率降低了5.32%~6.68%。【结论】可选择能够提高灌水均匀度的支管射流三通与毛管射流三通的最佳组合,并精确地预测3个模型下灌水系统水头损失的变化规律。  相似文献   

10.
射流振荡三通与滴灌毛管脉冲初步试验研究   总被引:3,自引:0,他引:3  
基于射流附壁与换向原理设计出一种能够在两个出口产生振荡水流的射流振荡三通,射流振荡三通的两个出口后面分别连接毛管后,能够使水流在两条毛管内按照一定频率间歇性流动,在毛管内产生脉冲水流,可以构建新型的脉冲滴灌系统。在分析射流振荡三通工作原理的基础上,确定了两组射流振荡三通的参数:喷嘴宽度W=5mm和W=4mm,并加工成试验样件,进行了射流振荡三通与毛管脉冲的初步试验研究。试验结果表明:在进口压力为50~120kPa条件下,水流经过射流振荡三通后,每组射流振荡三通都能够产生振荡水流;在每组射流振荡三通两个出口后面各连接一条60m长的毛管,可明显观测到毛管内产生的脉冲水流,在进口压力50~120kPa条件下,W=5mm与W=4mm的毛管进口压力脉冲幅度均在30kPa以上,脉冲频率都为3.6~4.0Hz。通过对比可知,喷嘴宽度越大,脉冲振幅就越大,脉冲频率就越小。  相似文献   

11.
为了探究射流脉冲喷头驱动板不同倾角及其对喷头水力性能的影响并找出水力性能最优驱动板倾角,采用正交试验法设计了6种不同倾角α(7°,10°,13°,16°,19°,22°)的驱动板,与副喷嘴整体加工实物,分别进行了在不同进口压力下的水力性能试验.试验采用多因素分析法,将喷头射程、喷灌均匀度、喷灌强度作为评价指标,对6组驱动板的试验结果进行分析.结果表明:在0.15~0.30 MPa的进口压力下,喷头射程(13.0~15.0 m)、进口流量(1.27~1.77 m3/h)、喷灌强度(2.38~2.51 mm/h)与驱动板倾角无关.随着驱动板倾角增大,副喷嘴喷洒水量向近处集中,喷灌均匀系数呈先增加后减小的趋势;当α为16°时,喷灌均匀系数最大,喷头的水力性能最优.  相似文献   

12.
为改善射流脉冲喷头的径向水量分布,基于射流脉冲喷头的“双驼峰”式水量分布以及挡水板结构的特点,创新了一种“槽型”驱动板结构,并进行了正交试验,得到一种新型结构的射流脉冲喷头.发现“槽型”驱动板的各结构因素对射流脉冲喷头喷灌均匀度影响的主次顺序及最优结构为内槽倾角13°、驱动板长度16 mm、槽宽3 mm、侧驱动板倾角17°、驱动板宽度11 mm.当进口压力为 0.15,0.20,0.25,0.30 MPa 时,开展了“槽型”射流脉冲喷头、原射流脉冲喷头与摇臂式喷头水力性能对比试验.试验结果表明:在0.15~0.30 MPa的进口压力下,新喷头进口流量相比原喷头进口流量减小0.12~0.17 m3/h,相比摇臂式喷头进口流量减小0.07~0.16 m3/h.“槽型”射流脉冲喷头喷灌均匀度比原射流脉冲喷头提高 1.25%~7.43%,比摇臂式喷头高 7.84%~14.42%.综合分析表明“槽型”驱动板结构设计合理,对射流脉冲喷头的喷灌均匀性改善显著.研究可为该型国产喷头后续研发和工程应用提供可借鉴的理论参考与数据支撑.  相似文献   

13.
高频脉冲条件下灌水器水沙两相流数值模拟   总被引:1,自引:0,他引:1  
为提高灌水器的抗堵塞性能,在与射流三通产生波形相同参数(周期、振幅)的高频脉冲波(正弦波、三角波、梯形波、矩形波)的条件下,以迷宫流道灌水器为研究对象,应用CFD两相流含沙量数值分析,采用k-ε湍流模型及多相流Eulerian模型,模拟高频脉冲条件下流量与压力水头关系、含沙量的瞬时分布,分析高频脉冲条件对颗粒物沉积区含沙量变化的影响。结果表明,高频脉冲波对灌水器平均流量和抗堵塞性能影响较大,高频脉冲波的波动性和连续性对提高灌水器抗堵塞能力起主要作用;抗堵塞能力由大到小的高频脉冲波形顺序为正弦波、三角波、梯形波、矩形波;入流含沙量增加会导致旋涡区泥沙的沉积,高频脉冲波可以增强旋涡区的冲刷以提高抗堵塞性能;灌水器内各处含沙量均随颗粒粒径的增大而升高,不同粒径下含沙量分布和变化略有不同。射流三通产生的脉冲波有利于提高灌水器的抗堵塞能力。  相似文献   

14.
为研究射流式离心泵内流动机理,以JET750G1型射流式离心泵为研究对象,搭建试验测试系统,分别对不同安装高度下射流式离心泵的空化及能量特性进行试验研究;基于k-ω湍流模型和Zwart-Gerber-Belamri空化模型,对0 mm安装高度下泵各工况点内部流动进行数值模拟.试验结果表明:当流量增大到一定程度之后,扬程-流量、功率-流量、效率-流量曲线均急剧下降;随着安装高度的增大,陡降起始点向小流量工况偏移.数值计算结果表明:扬程、功率、效率的数值模拟结果与试验值基本吻合,数值模拟性能陡降起始流量点比试验值大0.5 m3/h;射流式离心泵由于其面积比值较小,射流剪切层被迅速排挤到喉管壁面,泵内最低压力点出现在喉管内喷嘴稍后处,空化最早发生在该处;随着流量的增大,空化区域急剧向叶轮进口扩展,性能陡降起始点正好是泵内初生空化流量点,射流式离心泵的空化性能取决于其射流器的空化性能;射流器能提升离心泵扬程和自吸性能,但射流器内高速回流及强剪切流动,导致其效率及空化性能大幅下降.  相似文献   

15.
全圆旋转射流喷头设计与水力性能试验   总被引:3,自引:0,他引:3  
为了提高农业节水灌溉效率,提出了一种全圆旋转射流喷头。确定了喷头的CFD数值模拟方法,选取深宽比、位差比、劈距比、侧壁倾角作为试验因素,以射流附壁切换频率和流量振幅为指标,通过正交试验得到了喷头内流道的优化结构。通过高速摄影技术对喷头的射流附壁切换频率进行测定,同时监测喷头的进口流量,结果表明,模拟所得的流量压力关系与试验结果基本一致,相对误差范围为2. 1%~4. 0%,射流附壁切换频率随进口压力的变化趋势基本相同,相对误差范围为7. 7%~22. 2%。当进口压力为0. 15、0. 20、0. 25 MPa时,分别研究了PY210A型摇臂式喷头和射流喷头的水力性能,其中射流喷头的流量较小(1. 19~1. 53 m3/h)、射程较远(13. 0~15. 7 m)、平均喷灌强度较小(2. 85~3. 63 mm/h),转动周期较短(81~105 s),摇臂式喷头的喷洒水量呈"马鞍形"分布,射程近处和远处的喷洒水量相对较大,射流喷头的喷洒水量呈"三角形"分布,喷洒水量随射程增加而减小。  相似文献   

16.
双喷嘴负压反馈射流喷头水力性能研究   总被引:2,自引:0,他引:2  
为简化摇臂式喷头结构、提高其水力性能,通过负压反馈技术设计了一种双喷嘴射流喷头,包括射流元件、主副喷管、旋转密封机构等,其主副喷管长度分别为5.6mm和4.8mm、喷头仰角为30°,左右喷管里产生的间歇脉冲水流能够驱使喷头步进式全圆旋转。在0.20、0.25、0.30、0.35MPa进口压力下,以射程、平均喷灌强度和喷灌均匀度为评价指标,通过加权评分法,对比了4种不同主副喷嘴直径组合(4mm×3mm、4mm×4mm、5mm×4mm和5mm×5mm)射流喷头与摇臂式喷头的水力性能。结果表明:在上述4种进口压力下,主副喷嘴直径分别为5mm和4mm时的射流喷头综合性能最好,其水量分布呈“三角形”,射程在13.2~13.7m之间,平均喷灌强度在3.81~4.38mm/h之间,喷灌均匀性系数在82.5%~86.0%之间。  相似文献   

17.
双喷嘴射流喷头数值模拟和射程试验研究   总被引:2,自引:0,他引:2  
介绍了一种新型旋转式喷头——双喷嘴射流喷头结构形式和工作原理.首先对进水口公称直径为10 mm的射流喷头进行数值模拟研究,得到了主喷嘴和副喷嘴出口的压力和流量变化和射流脉冲频率.通过对宏观和微观条件下的喷头内部流动进行研究,分析了射流喷头的工作机理,主要有控制管内压力水流的流动状态和射流空间的低压涡流的变换过程.对双喷嘴射流喷头的射程进行初步试验研究,在0.05~0.25 MPa条件下,选用6.0,4.0,2.5,1.5 mm的喷嘴进行组合喷灌,结果表明射流喷头的射程范围为6~16 m,射程最远的为喷嘴直径4.0 mm×2.5mm的射流喷头,其次为喷嘴直径2.5 mm×1.5 mm的射流喷头,射程最近的为喷嘴直径6.0 mm×6.0 mm的射流喷头,喷头的射程能满足喷灌要求.  相似文献   

18.
基于异形喷嘴结构的低压喷头水力性能   总被引:1,自引:0,他引:1  
对2种流量相等的出口截面形状为正方形和正三角形的异形喷嘴与圆形喷嘴进行了对比研究,研究其压力、喷嘴锥角、出口截面形状对流量、射程、喷灌强度和喷灌均匀性等水力性能的影响.结合试验和Matlab软件,分析低压下异形喷嘴在矩形布置下的组合均匀性,确定了组合喷灌均匀性最好的喷嘴型号及其最佳组合间距.研究表明:锥角一定时,喷嘴的流量和射程均随着压力增大而增大;压力一定时,喷嘴的流量和射程随着锥角变大而减小.低压条件下,异形喷嘴的喷灌均匀性较圆形喷嘴有极大改善,低压组合喷灌均匀性最佳的喷嘴为锥角45°的正三角形喷嘴,最佳组合间距为一个有效喷洒半径.异形喷嘴的组合均匀性系数比圆形喷嘴的高,说明在组合喷灌时选用异形喷嘴更能体现喷灌均匀性优势.  相似文献   

19.
为了探究影响负压反馈射流喷头水力性能的重要参数对水力性能的影响程度,并选出综合水力性能最优下的重要参数组合,首先设计了4因素3水平正交试验,并根据试验要求分别加工出3种长度(4.2,5.6,7.0 cm)的喷管、3种直径(3,4,5 mm)的喷嘴,以及射流进口宽×深为4 mm×8 mm、位差1.80 mm、侧壁夹角20°、劈距28.0 mm、3种喷射仰角(20°,30°,40°)的射流机构,用于水力性能测试.采用综合评分法和极差分析法对正交试验结果进行处理,并引入了射程和喷灌均匀系数对试验结果进行评价.结果表明:影响喷头综合水力性能的重要参数,影响程度由大到小依次为喷射仰角、主副喷嘴直径、工作压力、主副喷管长度.得到了在此射流机构下的最优重要参数组合为工作压力0.35 MPa、主×副喷嘴直径5 mm×4 mm、喷射仰角30°、主×副喷管长度4.2 cm×4.2 cm.试验结果可为该型国产喷头的产品化和未来工程应用提供理论数据支撑.  相似文献   

20.
微喷头水力性能及喷灌组合均匀性试验研究   总被引:1,自引:0,他引:1  
为了解不同因素对微喷头水力性能及喷灌组合均匀性的影响,分别研究了喷嘴直径1.2和1.4 mm的微喷头在工作压力为250,300和350 k Pa下流量、射程、水量分布和喷灌组合均匀性系数变化规律.结果表明:喷嘴直径为1.2 mm的喷头,流量系数为0.005 9;喷嘴直径为1.4mm的喷头,流量系数为0.005 2;工作压力分别为250,300和350 k Pa下,1.4 mm喷嘴直径相比1.2 mm喷嘴直径流量分别增加5.0%,2.4%和3.0%,射程分别增加11%,8%和14%.距喷头距离近处,喷灌强度随着工作压力增大而增大;分别得到喷嘴直径为1.2和1.4 mm的微喷头喷灌强度、距喷头距离和工作压力之间的关系多项式;对于工作范围较小的微喷头,喷嘴直径对于射程影响较大;在相同工作压力下,组合喷灌均匀系数随喷头间距增加而减小,通过计算组合均匀系数发现喷嘴直径1.4 mm的微喷头在300 k Pa下,组合间距为1.0R时,喷灌均匀度最高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号