首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于高压扭转法制备SiCp/Al基复合材料(SiC体积分数为8.75%),采用排水法、金相显微镜、数字式显微硬度计,研究SiCp/Al基复合材料致密度、显微组织分布和硬度等性能。结果表明,基于高压扭转法可制备致密度高的SiCp/Al基复合材料,随着扭转半径的增加,SiC颗粒团聚现象减小,颗粒分布越均匀。材料的显微硬度呈先增加后减小的趋势。  相似文献   

2.
采用高压扭转(High-Pressure Torsion,HPT)工艺制备SiCp-Al基复合材料。通过显微组织的定性分析及样方法的定量计算,深入研究不同工艺参数对SiC颗粒分布的影响规律,结果表明:采用高压扭转法可以直接将8.75%(体积分数)SiC-Al混合粉末制备成金属基复合材料。通过金相分析得出:SiC颗粒在试样不同扭转半径处分布情况具有差异:工艺参数(温度、压力、圈数)对SiC颗粒分布有重要影响,结合样方法对颗粒分布情况的定量分析得出:随着扭转圈数、压力、扭转半径的增大,剪切作用增强,SiC颗粒分布均匀性提高;变形温度升高,基体流动性提高,颗粒分布均匀性得到改善。  相似文献   

3.
采用复合电镀技术在铸铁基体材料上制备了Ni-SiC复合镀层.研究了SiC粒度、浓度、阴极电流密度等工艺参数对复合镀层的微观组织和显微硬度的影响.研究结果表明:在相同浓度条件下,SiC粒度较小的镀层表面平整、细密、均匀;SiC粒度较大的镀层表面较粗糙,部分SiC颗粒没有被基质金属Ni完全包裹住.在相同粒度条件下,SiC浓度增加,镀层中的SiC颗粒含量随之增加.在一定浓度范围内,镀层硬度随着SiC粒度的增加而有所降低.且镀层硬度随着SiC浓度的增加而增加,也随着阴极电流密度的增加而增加.  相似文献   

4.
压扭对20CrMnTi端面组织性能的影响研究   总被引:1,自引:1,他引:0       下载免费PDF全文
通过实验对20CrMnTi材料的高压扭转成形过程进行了研究,重点考察了试样的端面的组织分布和硬度的变化,分析了外界压力、扭转圈数2个重要的工艺参数对20CrMnTi材料组织和硬度的影响。实验结果表明:高压扭转能够有效地细化晶粒,改善材料组织,且随着外界压力的增大、扭转圈数的增多,晶粒细化越明显,显微硬度提高越显著。  相似文献   

5.
Ni-Fe-W-SiC纳米复合镀层耐磨性能的研究   总被引:1,自引:0,他引:1  
采用电沉积法制备了Ni-Fe-W-SiC纳米复合镀层,研究了镀液中SiC含量对镀层中SiC含量的影响,采用显微硬度计测试了镀层的硬度,对镀层进行了磨损试验比较.结果表明,镀层中SiC含量随着镀液中SiC含量增加先增加、后减少;镀层硬度随着镀层中SiC含量增加而增强;耐磨性能随着镀层中SiC含量增加而加强,镀层磨损机制相应由剥落磨损向颗粒磨损转化.  相似文献   

6.
碳化硅纳米纤维/炭纤维共增强毡体的制备   总被引:1,自引:1,他引:0  
徐先锋  肖鹏  许林  熊翔  黄伯云 《功能材料》2008,39(4):692-694
以电镀Ni颗粒为催化剂,采用化学气相沉积(CVD)法,在炭纤维表面原位生长SiC纳米纤维(SiC-NF),制备出SiC纳米纤维/炭纤维共增强毡体.XRD和SEM分析表明生成的SiC纳米纤维物相为β-SiC,平均长度可达几十微米,直径在几十到几百个纳米之间.通过改变电镀镍的时间,研究了催化剂Ni颗粒的大小、形态及分布对SiC-NF生长情况的影响,研究结果表明,催化剂Ni颗粒分布越细小、均匀,催化活性越大,所生长的纳米SiC纤维也越细长,分布越均匀.  相似文献   

7.
采用OM和EDS研究不同扭转圈数下高压扭转法制备SiC_P/Al复合材料的显微组织和界面扩散行为,并结合组织特点和界面特征分析扭转圈数对复合材料拉伸性能和断裂机理的影响。结果表明:扭转圈数的增加可以有效提高SiC颗粒分布的均匀性,闭合孔隙,界面处Al元素扩散能力增强,扩散距离增大,Al扩散系数实际计算值较理论值增大了10~(17)倍,形成以元素扩散和界面反应为主的强界面结合,试样抗拉强度和伸长率不断提高,少量的SiC颗粒均匀分布在断口韧窝中,断裂主要以基体的韧性断裂为主;当扭转圈数较大时,SiC颗粒在剧烈剪切作用下破碎加剧,颗粒"再生团聚"导致孔隙率增大,潜在裂纹源增多,形成大量结合强度较低的断裂新生界面,试样抗拉强度和伸长率显著降低,在团聚位置易形成尺寸较大的深坑韧窝,复合材料断裂呈现韧性断裂与脆性断裂的混合模式。  相似文献   

8.
为了从理论上探讨纳米粒子在基体材料中的分布规律, 以纳米SiC质量分数为3%、 5%、 7%、 9%的SiC/PTFE(聚四氟乙烯)复合材料为例, 根据纳米SiC的半径(25 nm)、 密度(3.2 g/cm3)、 质量分数和基体材料的密度(2.2 g/cm3), 以10-12 g为质量单位、 25 nm:1像素为比例尺, 建立了纳米粒子在基体中均匀/偏聚分布的三维仿真模型, 基于其盒维数定量表征了不同团聚/偏聚程度的纳米粒子的分散度, 并进行了力学实验验证。结果表明: 均匀分布下随着纳米SiC粒子半径的不断增加, 或体积分数的不断减小, 其盒维数也逐渐减小; 当SiC粒子半径超过100 nm时, 不再具有分形特性。偏聚分布下随着纳米SiC粒子(半径为50 nm)间距的不断加大, 或体积分数的不断减小, 或层状、 线状、 团状分布的依次改变, 其盒维数也逐渐减小; 相同体积分数下偏聚分布的盒维数低于均匀分布; 当粒子间距超过450 nm时, 不再具有分形特性。均匀分布下纳米SiC/PTFE复合材料的力学性能测试结果与其三维仿真模型的盒维数线性相关(|R|>0.9)。盒维数可定量表征纳米粒子的分散度, 并可用于预测纳米复合材料的宏观性能。  相似文献   

9.
研究了挤压温度对粉末挤压法制备镁基复合材料室温拉伸性能和断口形貌的影响。实验结果表明: 复合材料在350~450 ℃温度范围内挤压温度越高, SiC 颗粒分布越均匀, 致密度越高, 复合材料强度、延伸率上升;复合材料断裂方式随着挤压温度升高由颗粒/ 基体脱粘向颗粒断裂转变。   相似文献   

10.
以工业用硅粉、碳粉和碳化钛粉为原料,利用放电等离子烧结技术原位反应制备了TiSi2-SiC两相复合材料和TiSi2-SiC-Ti3SiC2三相复合材料.利用XRD、FESEM和TEM对复合材料的相组成和微观结构进行了研究.结果表明,基体相TiSi2的晶粒尺寸在1um以上,反应生成的SiC颗粒尺度在200~300nm,且均匀弥散分布在TiSi2基体中.TiSi2-SiC材料的硬度、断裂韧性和抗弯强度随着SiC含量的增加都有一定程度的提高.Ti3SiC2三元相的引入大大提高了TiSi2-SiC-Ti3SiC2复合材料的力学性能. SiC和Ti2SiC2的引入对TiSi2-SiC复合材料在高温下的电导率和热导率影响较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号