首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
以乙二醇为溶剂,使用Aspen Plus化工模拟软件中的BatchFrac模块,基于UNIFAC模型,对异丙醇-水二元共沸物的间歇萃取精馏过程进行间歇萃取精馏模拟,研究了不同操作参数(如溶剂比、回流比、溶剂进料位置、溶剂进料温度等)对整个精馏过程的影响,对各工艺参数进行了分析与优化.结果表明,对于处理量为100kmol...  相似文献   

2.
采用化工流程模拟软件Aspen Plus,以水为溶剂,运用剩余曲线图方法对乙酸甲酯-甲醇共沸物的萃取精馏过程进行分析与过程模拟。考察原料和溶剂进料位置、溶剂比、回流比及溶剂进料温度对分离效果的影响。模拟结果表明:在保证产品纯度和较低能耗前提下,优化工艺条件为萃取精馏塔理论塔板数50块,原料和溶剂进料位置分别为第32和第24块塔板,溶剂比和回流比分别为1.6和5.0,溶剂进料温度35℃。在此工艺条件下,产品乙酸甲酯纯度99.75%(质量分数)以上,回收率达99.81%,产品热负荷3.95GJ·t~(-1)。  相似文献   

3.
以1 mol产品需要的能耗为目标函数,采用复合形优化方法对萃取精馏过程进行了优化计算,其结果表明当萃取精馏塔的塔板数为12块、进料位置为第8块、溶剂比为0.96、回流比为0.88、产品的流量为0.61 mol/h;溶剂1,4丁二醇回收塔的塔板数为12块,回流比为0.66;四氢呋喃提浓塔的塔板数为7块,回流比为0.80时,该萃取精馏过程不仅满足产品的纯度99.0%的要求,而且能耗最低.  相似文献   

4.
四氢呋喃—水恒沸物萃取精馏过程的三塔优化计算   总被引:1,自引:0,他引:1  
以1mol产品需要的能耗为目标函数,采用复合形优化方法对萃取精馏过程进行了优化计算,其结果表明当萃取精馏塔的塔板数为12块、进料位置为第8块、溶剂比为0.96、回流比为0.88、产品的流量为0.61mol/h;溶剂1,4—丁二醇回收塔的塔板数为12块,回流比为0.66;四氢呋喃提浓塔的塔板数为7块,回流比为0.80时,该萃取精馏过程不仅满足产品的纯度99.0%的要求,而且能耗最低。  相似文献   

5.
以ε-己内酰胺为萃取剂,用Aspen Plus在NRTL-HOC物性条件下,来模拟醋酸和水的萃取精馏分离。并对萃取精馏塔和溶剂回收塔进行优化设计,得到了两塔最佳的操作条件如下:萃取精馏塔最佳的馏出比为0. 58,最佳的理论板数40块,原料液进料位置为第26块板,ε-己内酰胺进料位置为第3块板,操作回流比为3,溶剂比为1. 0;溶剂回收塔最佳的馏出比为0. 51,最佳的理论板数为8块,进料位置为第6块板,操作回流比为2. 1。在最佳操作条件下,萃取精馏塔顶醋酸的含量高达99. 8%,两塔再沸器总热负荷为6616. 89 k W,比普通精馏过程节能64. 94%。  相似文献   

6.
用Wang和Henke泡点法对宽沸点体系的萃取精馏进行了模拟计算,结果表明:在塔板数为12块、泡点进料并满足塔顶产品含量大于99.5%的情况下,进料位置为第8块、溶剂比为1、回流比为1.5 塔顶产品的采出量为0.5 mol/s时,该萃取精馏的状况较好.此外,还就Wang 和Henke泡点法对宽沸点体系的萃取精馏模拟计算的收敛性进行了探讨.  相似文献   

7.
利用Aspen Plus化工模拟流程软件对甲苯-乙醇共沸体系进行了萃取精馏模拟分离研究。应用Flash 2模块来筛选出萃取精馏的适宜溶剂为正丁苯。确定了萃取精馏的工艺流程,并且通过灵敏度分析模块分别考查了萃取精馏塔和溶剂回收塔的进料板位置、回流比以及溶剂比对分离效果的影响。当溶剂质量比为2.2时,产品乙醇的质量分数可达99.9%,甲苯可达99.5%,溶剂回收率约为99.5%。  相似文献   

8.
四氢呋喃—水恒沸物萃取精馏的模拟计算   总被引:3,自引:1,他引:3  
用Wang和Henke泡点法对宽沸点体系的萃取精馏进行了模拟计算,结果表明:在塔板数为12块、泡点进料并满足塔顶产品含量大于99.5%的情况下,进料位置为第8块、溶剂比为1、回流比为1.5塔顶产品的采出量为0.5mol/s时,该萃取精馏的状况较好,此外,还就Wang和Henke泡点法对宽沸点体系的萃取精馏模拟计算的收敛性进行了探讨。  相似文献   

9.
设计了一套完整的橡胶防老剂4010NA生产后的废溶剂回收装置,采用普通精馏工艺分离丙酮、异丙醇和水的混合溶液得到高纯度丙酮;采用共沸精馏工艺,以苯作带水剂,对脱水塔塔顶采出的异丙醇和水的混合物进行分离,得到高纯度异丙醇。利用Aspen Plus模拟软件对各个过程进行模拟,得到各塔的最佳理论板数和每股物料的最佳进料位置,而且模拟得到了每股物料的工艺参数:废溶剂在丙酮脱除塔中的最佳进料位置为第26块理论板,全塔的最佳理论板数为46块,塔顶温度为55.70℃,压力为99.98kPa,回流比为7;水分脱除塔中物料的最佳进料位置为第7块理论板,全塔的最佳理论板数为22块,塔顶温度为79.37℃,压力为100kPa,回流比为6;脱水塔中异丙醇-水混合液的最佳进料位置为第7块理论板,苯的最佳进料位置为第1块理论板,全塔的最佳理论板数为22块,塔顶温度为55.40℃,压力为100kPa,回流比为6。回收处理后,丙酮的含量≥99%,异丙醇含量≥99%,水含量≥99.8%(均为质量分数),达到回收要求。  相似文献   

10.
萃取精馏分离甲醇与醋酸甲酯的实验研究   总被引:4,自引:0,他引:4  
建立了一套φ40mm精馏塔。用水作萃取剂进行了萃取精馏分离醋酸甲酯和甲醇的共沸物的实验研究,探讨了溶剂比、回流比、原料液温度和萃取剂温度等主要影响因素的改变对萃取精馏过程的影响。本文建议采用的操作条件:溶剂比为2-3;回流比为0.75-1.0;进料温度为泡点温度;萃取剂温度为常温。  相似文献   

11.
基于Aspen Plus流程模拟软件,采用苯酚做萃取剂,对甲苯-正庚烷共沸体系的萃取精馏分离过程进行模拟与优化.采用Sensitivity灵敏度分析模块分析考察了原料进料位置、萃取剂进料位置、回流比及溶剂比对萃取精馏分离效果的影响,得到了最佳操作条件.优化结果可为甲苯-正庚烷萃取精馏分离工艺工业化设计提供了理论依据和设计参考.  相似文献   

12.
通过一个常规间歇萃取精馏实验装置,考察三元混合溶剂(NMP+DMF+DMSO)在不同回流比及萃取溶剂加入速率情况下对分离苯-环己烷共沸体系的影响.实验结果表明,三元混合溶剂能够解决单一溶剂存在的选择性与溶解性相矛盾的问题,且三元混和溶剂存在最佳组成,综合性能优于单一溶剂;随溶剂加入速率和操作回流比的增加,产品产量逐渐提高,尤其是混合溶剂间歇萃取精馏技术与简单溶剂间歇萃取精馏技术相比并不复杂.  相似文献   

13.
利用隔离壁萃取精馏塔分离甲乙酮/水的共沸物。考察了溶剂比、回流比和进料速度对分离过程的影响。当溶剂比为3、回流比为3.5、进料速度为1.6 mL/min时,塔顶甲乙酮的质量分数达到98.8%,塔釜乙二醇质量分数达到96.3%。利用Asp-en Plus对该新工艺进行了模拟。结果表明,模拟值与实验值相一致。此新工艺比常规萃取精馏工艺节能5.6%。  相似文献   

14.
反应萃取精馏技术生产二氧五环的工艺研究   总被引:2,自引:1,他引:1  
针对二氧五环传统生产工艺存在的缺陷,引入反应萃取精馏技术改造传统工艺。采用实验与计算机模拟相结合的方式对连续反应萃取精馏生产二氧五环的工艺过程进行了系统研究,得到了适宜的工艺参数:反应萃取精馏塔总板数21块,其中精馏段2块,萃取段9块,反应段5块,提馏段5块;回流比为1.5;进料比例n(乙二醇)∶n(甲醛)=1.05∶1。此工艺条件下生产的二氧五环纯度可达94.7%。  相似文献   

15.
详细讨论了共沸精馏的基本原理 ,并在填料塔中利用共沸精馏 ,研究了乙醇 -水系统所需共沸剂 (苯 )的配比与乙醇的最终浓度及共沸精馏时间之间的关系。采用了两种加料方式及富苯相回流。结果表明 ,两种加料方式具有类似的规律 ,均存在一个共沸剂的最佳配比 ,但达到某一分离要求时共沸精馏所需时间及共沸剂用量不同。在乙醇质量分数达 99.7%以上时 ,采用富苯相回流的共沸剂较采用普通的混相回流少用 1 /3~ 1 /2。因此 ,采用混相回流可减少共沸剂用量 ,降低共沸剂提纯回收费用 ,对工业生产有一定的现实意义。  相似文献   

16.
恒沸精馏过程挟带剂量的研究   总被引:3,自引:0,他引:3  
恒沸精馏是分离近沸点与恒沸物系的重要手段,挟带剂量是影响恒沸精馏分离性质的重要因素。本研究以环己烷为挟带剂的异丙醇-水分离过程为例,运用ASPEN PLUS过程模拟软件,对挟带剂量在恒沸精馏过程的影响进行了模拟研究,发现了在恒沸流程中存在一个最小挟带剂量,提出了最小挟带剂量的计算方法;研究了最小挟带剂量与恒沸精馏过程提纯塔理论板数之间的关系及对精馏过程的影响,发现存在一个适宜理论板数。还对苯为挟带剂的异丙醇-水分离过程进行了模拟分析,结果表明以苯为挟带剂与以环己烷为挟带剂有相似的规律。  相似文献   

17.
用隔离壁精馏塔萃取精馏制无水乙醇。在溶剂比为1.8,回流比为3:1,乙醇原料进料速度为1.6mL/min时,塔顶乙醇的质量分数达到99.5%;塔釜乙二醇的质量分数达到96.4%,可直接作萃取剂循环利用。用Aspen Plus对该工艺和二塔萃取精馏工艺对比,结果与实验相一致,塔顶组成相对误差为0.5%,塔釜组成相对误差2.4%。结果显示该工艺比现有工艺少一个塔、一个再沸器和一个冷凝器,节能12%,降低了能耗和设备投资。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号