首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A thermostable chitosanase, purified 156-fold to homogeneity in an overall yield of 12.4%, has a molecular weight of about 29,000±2,000, and is composed of monomer. The enzyme degraded soluble chitosan, colloidal chitosan, and glycol chitosan, but did not degrade chitin or other β-linked polymers. The enzyme activity was increased about 2.5-fold by the addition of 10 mM Co2+ and 1.4-fold by Mn2+. However, Cu2+ ion strongly inhibited the enzyme. Optimum temperature and pH were 60°C and 6.5, respectively. The enzyme was stable after heat treatment at 80°C for 30 min or 70°C for 60 min and fairly stable in protein denaturants as well. Chitosan was hydrolyzed to (GlcN)4 as a major product, by incubation with the purified enzyme. The effects of ammonium sulfate and organic solvents on the action pattern of the thermostable chitosanase were investigated. The amounts of (GlcN)3-(GlcN)6 were increased about 30% (w/w) in DAC 99 soluble chitosan containing 10% ammonium sulfate, and (GlcN)1 was not produced. The monophasic reaction system consisted of DAC 72 soluble chitosan in 10% EtOH also showed no formation of (GlcN)1, however, the yield of (GlcN)3 ~ (GlcN)6 was lower than DAC 99 soluble chitosan-10% ammonium sulfate. The optimal concentration of ammonium sulfate to be added was 20%. At this concentration, the amount of hexamer was increased by over 12% compared to the water-salt free system.  相似文献   

2.
Extracellular chitosanase produced by Amycolatopsis sp. CsO-2 was purified to homogeneity by precipitation with ammonium sulfate followed by cation exchange chromatography. The molecular weight of the chitosanase was estimated to be about 27,000 using SDS-polyacrylamide gel electrophoresis and gel filtration. The maximum velocity of chitosan degradation by the enzyme was attained at 55°C when the pH was maintained at 5.3. The enzyme was stable over a temperature range of 0–50°C and a pH range of 4.5–6.0. About 50% of the initial activity remained after heating at 100°C for 10 min, indicating a thermostable nature of the enzyme. The isoelectric point of the enzyme was about 8.8. The enzyme degraded chitosan with a range of deacetylation degree from 70% to 100%, but not chitin or CM-cellulose. The most susceptible substrate was 100% deacetylated chitosan. The enzyme degraded glucosamine tetramer to dimer, and pentamer to dimer and trimer, but did not hydrolyze glucosamine dimer and trimer.  相似文献   

3.
Lipases/acyltransferases catalyse acyltransfer to various nucleophiles preferentially to hydrolysis even in aqueous media with high thermodynamic activity of water (a w >0.9). Characterization of hydrolysis and acyltransfer activities in a large range of temperature (5 to 80 °C) of secreted recombinant homologous lipases of the Pseudozyma antarctica lipase A superfamily (CaLA) expressed in Pichia pastoris, enlighten the exceptional cold-activity of two remarkable lipases/acyltransferases: CpLIP2 from Candida parapsilosis and CtroL4 from Candida tropicalis. The activation energy of the reactions catalysed by CpLIP2 and CtroL4 was 18–23 kJ mol?1 for hydrolysis and less than 15 kJ mol?1 for transesterification between 5 and 35 °C, while it was respectively 43 and 47 kJ mol?1 with the thermostable CaLA. A remarkable consequence is the high rate of the reactions catalysed by CpLIP2 and CtroL4 at very low temperatures, with CpLIP2 displaying at 5 °C 65 % of its alcoholysis activity and 45 % of its hydrolysis activity at 30 °C. These results suggest that, within the CaLA superfamily and its homologous subgroups, common structural determinants might allow both acyltransfer and cold-active properties. Such biocatalysts are of great interest for the efficient synthesis or functionalization of temperature-sensitive lipid derivatives, or more generally to lessen the environmental impact of biocatalytic processes.  相似文献   

4.
A strain of Brevibacillus formosus, capable of producing a high level of chitinase, was isolated and characterized for the first time from the Great Indian Desert soils. The production of extracellularly secreted chitinase was analyzed for its biocontrol potential and optimized by varying media pH, temperature, incubation period, substrate concentrations, carbon and nitrogen sources, etc. A twofold increase in chitinase production (798 IU/mL) was achieved in optimized media containing (g l?1) chitin 2.0, malt extract 1.5, glycerol 1.0, ammonium nitrate 0.3 %, T-20 (0.1 %) and media pH 7.0 at 37 °C. The produced enzyme was purified using a three-step purification procedure involving ultra-filtration, ammonium sulphate precipitation and adsorption chromatography. The estimated molecular weight of the purified enzyme was 37.6 kDa. The enzyme was found thermostable at higher temperatures and showed a t ½ of more than 5 h at 100 °C. Our results show that the chitinase produced by B. formosus BISR-1 is thermostable at higher temperatures.  相似文献   

5.
We characterized the antifungal activity of the Bacillus circulans subclass III MH-K1 chitosanase (MH-K1 chitosanase), which is one of the most intensively studied glycoside hydrolases (GHs) that belong to GH family 46. MH-K1 chitosanase inhibited the growth of zygomycetes fungi, Rhizopus and Mucor, even at 10 pmol (0.3 μg)/ml culture probably via its fungistatic effect. The amino acid substitution E37Q abolished the antifungal activity of MH-K1 chitosanase, but retained binding to chitotriose. The E37Q mutant was fused with green fluorescent protein (GFP) at its N-terminus and proved to act as a chitosan probe in combination with wheat-germ agglutinin (WGA), which is a chitin-specific binding lectin. The GFP-fused MH-K1 chitosanase mutant E37Q (GFP-E37Q) bound clearly to the hyphae of the Rhizopus and Mucor strains, indicating the presence of chitosan. In contrast, Cy5-labelled WGA (Cy5-WGA), but not GFP-E37Q, stained the hyphae of non-zygomycetes species, i.e. Fusarium oxysporum, Penicillium expansum, and Aspergillus awamori. When the mycelia of Rhizopus oryzae were treated with wild type MH-K1 chitosanase, they could not bind to GFP-E37Q but were stained instead by Cy5-WGA. We conclude that chitin is covered by chitosan in the cell walls of R. oryzae.  相似文献   

6.
This study aimed at isolation, purification and characterization of a chitosanase from Mucor circinelloides mycelium. The latter contains also a mycelium-bound lipase and lipids. The chitosanase and lipase were extracted from defatted M. circinelloides mycelium with a detergent and purified through a two-step procedure comprising chromatography on bacitracin–CNBr-Sepharose 4B and gel filtration on Sephadex G-100. Purification degree of the chitosanase (endo-type enzyme) and lipase was 23 and 12, respectively. These enzymes were optimally active at pH of 5.5–6.0 (chitosanase) and 7.2 (lipase in olive oil hydrolysis) and at 37 °C. Both purified enzymes were activated by Ca2+ and Mg2+ ions. The preferred substrates of chitosanase were chitosan preparations with a high degree of deacetylation. This enzyme showed no activity for colloidal chitin, Na-CMC and starch. SDS–PAGE of both purified enzymes showed two bands with molecular masses of 42 and 43 kDa. Our results suggest that M. circinelloides synthesizes an oligomeric (bifunctional) lipase which also efficiently depolymerizes chitosan.  相似文献   

7.
Wang J  Zhou W  Yuan H  Wang Y 《Carbohydrate research》2008,343(15):2583-2588
A 28kDa chitosanase designated as Csn2 was purified from the culture broth of the fungus Gongronella sp. JG through three chromatography steps: CM-Sepharose FF, Superdex 200 and SP-Sepharose FF. Its optimal reaction pH and temperature were pH 5.6 and between 55 degrees C and 60 degrees C. The half-lives of Csn2 at 50 degrees C and 55 degrees C were estimated to be 30min and 11min, respectively. The K(m) value of Csn2 in sodium acetate buffer (pH 5.6) at 55 degrees C was 8.86mg/mL. Mn(2+), Ca(2+) and Sr(2+) were activators of Csn2; ETDA was an inhibitor. Cu(2+) stimulated Csn2 at 1mM, but inhibited Csn2 activity at 10mM. Csn2 displayed strong activity on colloidal chitosan, but did not hydrolyze colloidal chitin and carboxylmethyl cellulose. Thin layer chromatography analysis showed the end products of colloidal chitosan hydrolyzed by Csn2 were chitobiose, chitotriose and chitotetraose with chitotriose as the major product. The N terminus of Csn2 was determined to be YQLPANLKKIYDSHKSGTC. Part of the genomic DNA sequence corresponding to Csn2 was cloned. Sequence alignment showed DNA sequence of Csn2 was partly identical to chitosanase genes from Metarhizium anisopliae var. acridum, Hypocrea lixii and Aspergillus fumigatus. Based on sequence similarity, Csn2 was classified as a GH-75 chitosanase.  相似文献   

8.
We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S–S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T m) ranging from 72 °C to 77 °C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45 °C and 55 °C) and at high temperatures (60 °C and 65 °C), the hydrolysis yields being two- to three-fold better at 60 °C, and six- to seven-fold better at 65 °C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70 °C.  相似文献   

9.
An extremely thermophilic bacterial isolate that produces a high titer of thermostable endoxylanase and β-xylosidase extracellularly in an inducible manner was identified as Geobacillus thermodenitrificans TSAA1. The distinctive features of this strain are alkalitolerance and halotolerance. The endoxylanase is active over a broad range of pH (5.0–10.0) and temperatures (30–100 °C) with optima at pH 7.5 and 70 °C, while β-xylosidase is optimally active at pH 7.0 and 60 °C. The T 1/2 values of the endoxylanase and β-xylosidase are 30 min at 80 °C, and 180 min at 70 °C, respectively. The endoxylanase activity is stimulated by dithiothreitol, but inhibited strongly by EDAC and Woodward’s reagent K. N-BS and DEPC strongly inhibited β-xylosidase. MALDI-ToF (MS/MS) analysis of tryptic digest of β-xylosidase revealed similarity with that of G. thermodenitrificans NG 80-2, and suggested that this belongs to the GH 52 glycosyl hydrolase super family. The action of endoxylanase on birch wood xylan and agro-residues such as wheat bran and wheat straw liberated xylooligosaccharides similar to endoxylanases of the family 10 glycoside hydrolases, while the enzyme preparation having both endoxylanase and β-xylosidase liberated xylose as main hydrolysis product.  相似文献   

10.
A new strain Penicillium sp. IB-37-2, which actively hydrolyzes chitosan (SD ~80–85%) but possesses low activity against colloidal chitin, was isolated. The fungus was observed to have a high level chitosanase biosynthesis (1.5–3.0 U/mL) during submerged cultivation at 28°C, with a pH of 3.5–7.0 and 220 rpm in nutrient media containing chitosan or chitin from shells of crabs. Purification of the chitosanase enzyme complex from Penicillium sp. IB-37-2 by ultrafiltration and hydrophobic chromatography, followed by denaturing electrophoresis, revealed two predominant proteins with molecular weights of 89 and 41 kDa. The purified enzyme complex demonstrated maximal activity (maximal rate of hydrolysis of dissolved chitosan) and stability at 50–55°C and a pH of 3.5–4.0. The enzyme preparation also hydrolyzed laminarin, β-(1,3)-(1,4)-glycan, and colloidal chitin. Exohydrolysis of chitosan by the preparation isolated from Penicillium sp. IB-37-2 resulted in the formation of single product, D-glucosamine.  相似文献   

11.
Properties of Chitosanase from Bacillus cereus S1   总被引:3,自引:0,他引:3  
Chitosanase from Bacillus cereus S1 was purified, and the enzymatic properties were investigated. The molecular weight was estimated to 45,000 on SDS-PAGE. Optimum pH was about 6, and stable pH in the incubation at 40°C for 60 min was 6–11. This chitosanase was stable in alkaline side. Optimum temperature was around 60°C, and enzyme activity was relatively stable below 60°C. The degradations of colloidal chitosan and carboxymethyl cellulose (CMC) were about 30 and 20% relative to the value of soluble chitosan, respectively, but colloidal chitin and crystalline cellulose were not almost hydrolyzed. On the other hand, S1 chitosanase adsorbed on colloidal chitin completely and by about 50% also on crystalline cellulose, in contrast to colloidal chitosan, which it did not adsorb. S1 chitosanase finally hydrolyzed 100% N-deacetylated chitosan (soluble state) to chitobiose (27.2%), chitotriose (40.6%), and chitotetraose (32.2%). In the hydrolysis of various chitooligosaccharides, chitobiose and chitotriose were not hydrolyzed, and chitotetraose was hydrolyzed to chitobiose. Chitobiose and chitotriose were released from chitopentaose and chitohexaose. From this specificity, it was hypothesized that the active site of S1 chitosanase recognized more than two glucosamine residues posited in both sides against splitting point for glucosamine polymer. Received: 8 June 1999 / Accepted: 20 July 1999  相似文献   

12.
The gene (1,542 bp) encoding thermostable Ca2+-independent and raw starch hydrolyzing α-amylase of the extremely thermophilic bacterium Geobacillus thermoleovorans encodes for a protein of 50 kDa (Gt-amyII) with 488 amino acids. The enzyme is optimally active at pH 7.0 and 60 °C with a t 1/2 of 19.4 h at 60 and 4 h at 70 °C. Gt-amyII hydrolyses corn and tapioca raw starches efficiently and therefore finds application in starch saccharification at industrial sub-gelatinisation temperatures. The starch hydrolysis is facilitated following adsorption of the enzyme to starch at the C-terminal domain, as confirmed by the truncation analysis. The adsorption rate constant of Gt-amyII to raw corn starch is 37.6-fold greater than that for the C-terminus truncated enzyme (Gt-amyII-T). Langmuir–Hinshelwood kinetic analysis in terms of equilibrium parameter (K R) suggested that the adsorption of Gt-amyII to corn starch is more favourable than that of Gt-amyII-T. Thermodynamics of temperature inactivation indicated a decrease in thermostabilisation of Gt-amyII upon truncation of its C-terminus. The addition of raw corn starch increased t 1/2 of Gt-amyII, but it has no such effect on Gt-amyII-T. It can, therefore, be stated that Gt-amyII binds to raw corn starch via C-terminal region that contributes to its thermostability. Phylogenetic analysis confirmed that starch binding region of Gt-amyII is, in fact, the non-catalytic domain C, and not the typical SBD of CBM families. The role of domain C in raw starch binding throws light on the evolutionary path of the known SBDs.  相似文献   

13.
A novel gene encoding thermostable endoglucanase was identified in Xanthomonas sp. EC102 from soil. The gene had 1,458 base pairs of open reading frame, which encode a 52-kDa protein of 486 amino acid residues. Sequence of the amino acid residues was similar with the endoglucanase from Xanthomonas campestris pv. campestris ATCC33913 (GenBank Accession No. NP_638867.1) (94 % identity). The endoglucanase was overexpressed in Escherichia coli BL21 and purified. Temperature for the highest enzymatic activity was 70 °C and pH optima was pH 5.5. The specific activity of the endoglucanase toward carboxymethylcellulose (CMC) was approximately 2 μmol min?1 mg?1, V max for CMC was 1.44 μmol mg?1 min?1, and K m values was 25.6 mg mL?1. The EC102 endoglucanase was stable at temperatures up to 60 °C, and it was activated by 0.1 mM of Mn2+ and Co2+. This is the first report about thermostable endoglucanase from Xanthomonas sp.  相似文献   

14.
The advantage of usingStreptomyces griseus HUT 6037 in the production of chitinase or chitosanase is that the organism is capable of hydrolyzing amorphous or crystal-line chitin and chitosan according to the type of the substrate used. We investigated the effects of the enzyme induction time and chitin sources, CM-chitosan and deacetylated chitosan (degree of deacetylation 75–99%), on production of chitosanase. We found that this strain accumulated chitosanase when cells were grown in the culture medium containing chitosanaceous substrates instead of chitinaceous substrates. The highest chitosanase activity was obtained at 4 days of cultivation with 99% deacetylated chitosan. Soluble chitosan (53% deacetylated chitosan) was found to induce chitinase as well as chitosanase. The specific activities of chitinase and chitosanase were 0.91 and 1.33 U/mg protein at 3 and 5 days, respectively. From the study of the enzymatic digestibility of various degrees of deacetylated chitosan, it was found that (GlcN)3, (GlcN)4 and (GlcN)5 were produced during the enzymatic hydrolysis reaction. The results of this study suggested that the sugar composition of (GlcN)3 was homogeneous and those of (GlcN)4 and (GlcN)5 were heterogeneous.  相似文献   

15.
Thermostability is an important feature in industrial enzymes: it increases biocatalyst lifetime and enables reactions at higher temperatures, where faster rates and other advantages ultimately reduce the cost of biocatalysis. Here we report the thermostabilization of a chimeric fungal family 6 cellobiohydrolase (HJPlus) by directed evolution using random mutagenesis and recombination of beneficial mutations. Thermostable variant 3C6P has a half‐life of 280 min at 75°C and a T50 of 80.1°C, a ~15°C increase over the thermostable Cel6A from Humicola insolens (HiCel6A) and a ~20°C increase over that from Hypocrea jecorina (HjCel6A). Most of the mutations also stabilize the less‐stable HjCel6A, the wild‐type Cel6A closest in sequence to 3C6P. During a 60‐h Avicel hydrolysis, 3C6P released 2.4 times more cellobiose equivalents at its optimum temperature (Topt) of 75°C than HiCel6A at its Topt of 60°C. The total cellobiose equivalents released by HiCel6A at 60°C after 60 h is equivalent to the total released by 3C6P at 75°C after ~6 h, a 10‐fold reduction in hydrolysis time. A binary mixture of thermostable Cel6A and Cel7A hydrolyzes Avicel synergistically and released 1.8 times more cellobiose equivalents than the wild‐type mixture, both mixtures assessed at their respective Topt. Crystal structures of HJPlus and 3C6P, determined at 1.5 and 1.2 Å resolution, indicate that the stabilization comes from improved hydrophobic interactions and restricted loop conformations by introduced proline residues. Biotechnol. Bioeng. 2013; 110: 1874–1883. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
In this study thermostable keratinase rK27 of Bacillus pumilus KS12 was expressed and secreted in Bacillus subtilis WB980 expression system under the control of xylose promoter (PxylA). The concentration of the recombinant keratinase rK27 produced by B. subtilis reached 4,432 U/mL after 24 h of culture at 37 °C and 200 rpm with 0.5 % xylose at an initial concentration of 0.3 OD600nm. Using the one-factor-at-a-time approach, we achieved an improvement in enzyme yield of up to 3.4-fold (15,390 U/mL) in the presence of 3 % yeast extract and 0.5 % tryptone. The enzyme was purified to homogenity using nickel affinity chromatography with a 3.63-fold purity and 80 % recovery. The purified enzyme rK27 hydrolyzed 1 g bone meal after 12 h at 40 °C, pH 9, with a maximum protein release of 37.3 mg/g bone meal; in comparison subtilisin Carlsberg hydrolyzed 19.3 mg/g bone meal and proteinase K hydrolyzed 6.2 mg/g bone meal. The hydrolysate obtained after hydrolysis of bone by rK27 was found to be effective as a flocculant at 0.1 mg in a 10 % (w/v) kaolin solution when compared with hydrolysates obtained from substilisin Carlsberg and proteinase K, which were effective at 0.5 mg and >2 mg, respectively.  相似文献   

17.
LipA and LipB of Thermosyntropha lipolytica DSM 11003 as previously published are the most alkalithermophilic (pH opt 25°C  = 9.4–9.6, T opt = 96°C) and thermostable (T 1/2 24 h  = 74–76°C) lipases currently known. The purified enzymes were analyzed in organic solvents for their ability to catalyze synthesis of diacylglycerols and various alcohol fatty acids. To obtain 100% recovery and avoid a 40% and 50% loss of catalytic activity during lyophilization of purified LipA and LipB, respectively, addition of 1 mg/ml bovine serum albumin (BSA) and 25% polyethylene glycol (PEG400) was required. LipA and LipB catalyzed esterification of fatty acids and alcohols with the highest yields for octyl oleate (LipA) and lauryl oleate (LipB) and also catalyzed synthesis of 1,3-dioleoyl glycerol, 1-oleoyl-3-lauroyl glycerol, and 1-oleoyl-3-octoyl glycerol. Isooctane was the most efficient solvent for esterification reactions at 85°C. Similar to the positional specificity for the hydrolytic reaction in aqueous solutions, LipA and LipB catalyzed in organic solvents the synthesis of diacylglycerol with esterification of position 1 and 3 with a yield of 62% for di-oleoyl glycerol. The reported conversion rates do not represent the full potential of these enzymes, since only 1/100th–1/1,000th of the protein concentrations usually used in commercial processes were available. However, use of slightly increased protein concentrations confirmed the trend to higher yields with higher protein concentrations. The obtained specificity and variety of the reactions catalyzed by LipA and LipB, and their high thermostability allowing synthesis to occur at 90°C, demonstrate their great potentials for industrial applications, particularly in structured lipid biosynthesis for substrates that are less soluble at mesobiotic temperatures.  相似文献   

18.
Thermostable cellulases offer several advantages like higher rates of substrate hydrolysis, lowered risk of contamination, and increased flexibility with respect to process design. In the present study, a thermostable native endoglucanase nEG (EC 3.2.1.4) was purified and characterized from T. aurantiacus RCKK. Further, it was cloned in P. pastoris X-33 and processed for over expression. Expression of recombinant endoglucanase (rEG) of molecular size ~?33 kDa was confirmed by SDS-PAGE and western blotting followed by in gel activity determination by zymogram analysis. Similar to nEG, the purified rEG was characterized to harbor high thermostability while retaining 50% of its initial activity even after 6- and 10-h incubation at 80 and 70 °C, respectively, and exhibited considerable stability in pH range 3.0–7.0. CD spectroscopy revealed more than 20% β-sheets in protein structure consistently when incubated upto 85 °C as a speculated reason for protein high thermostability. Interestingly, both nEG and rEG were found tolerant up to 10% of the presence of 1-ethyl-3-methylimidazolium acetate [C2mim][OAc]. Values of the catalytic constants Km and Vmax for rEG were recorded as 2.5 mg/ml and 303.4 µmol/mg/min, respectively. Thermostability, pH stability, and resistance to the presence of ionic liquid signify the potential applicability of present enzyme in cellulose hydrolysis and enzymatic deinking of recycled paper pulp.  相似文献   

19.
《Process Biochemistry》2004,39(11):1745-1749
A moderately thermophilic Bacillus subtilis strain, isolated from fresh sheep’s milk, produced extracellular thermostable α-amylase. Maximum amylase production was obtained at 40 °C in a medium containing low starch concentrations. The enzyme displayed maximal activity at 135 °C and pH 6.5 and its thermostability was enhanced in the presence of either calcium or starch. This thermostable α-amylase was used for the hydrolysis of various starches. An ammonium sulphate crude enzyme preparation as well as the cell-free supernatant efficiently degraded the starches tested. The use of the clear supernatant as enzyme source is highly advantageous mainly because it decreases the cost of the hydrolysis. Upon increase of reaction temperature to 70 °C, all substrates exhibited higher hydrolysis rates. Potato starch hydrolysis resulted in a higher yield of reducing sugars in comparison to the other starches at all temperatures tested. Soluble and rice starch took, respectively, the second and third position regarding reducing sugars liberation, while the α-amylase studied showed slightly lower affinity for corn starch and oat starch.  相似文献   

20.
烟曲霉菌壳聚糖酶基因的克隆及在大肠杆菌中的表达   总被引:3,自引:0,他引:3  
根据GenBank中发布的烟曲霉菌壳聚糖酶(Aspergillus fumigatus chitosanase,EC3.2.1.132)基因序列人工合成8条DNA长链及4条引物链。DNA链的设计上在不改变壳聚糖酶氨基酸组成的前提下选择大肠杆菌使用频率高的密码子。PCR拼接法扩增壳聚糖酶基因并克隆入pGEM_T easy载体进行序列分析,进一步亚克隆入表达载体pGEX_3X。重组质粒pGEX_Csn转化E.coli DH5α,IPTG诱导表达,亲和层析及Factor Xa酶解纯化重组Csn。所得重组壳聚糖酶具有降解壳聚糖的生物活性,其活性受温度及pH值的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号