首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation was carried out to screen and select efficient vesicular arbuscular mycorrhizal (VAM) fungi for inoculating the forest tree species, Casuarina equisetifolia. The seedlings were inoculated with 10 different VAM fungi, obtained from various sources. Inoculated seedlings generally had greater plant height, stem girth, biomass and P content than uninoculated plants. They also had more mycorrhizal root colonization and spore numbers in root zone soil. C. equisetifolia seedlings responded best (in biomass) to inoculation with Glomus mosseae (Nicolson and Gerdemann) Gerdemann and Trappe, closely followed by Acaulospora laevis Gerdemann and Trappe and G. fasciculatum (Thaxter Sensu Gerdemann) Gerdemann and Trappe; all the three being statistically on par with each other.  相似文献   

2.
Cyclobalanopsis glauca is an important afforestation tree species that is widely used for revegetating the karst region of southwest China. Vegetation in this region is regularly commonly subjected to drought stress because of the geology and water shortages. Here, we investigated the influence of two arbuscular mycorrhizal fungi (AMF) Glomus mosseae and Glomus intraradices on the drought tolerance of C. glauca seedlings under greenhouse conditions. AMF-treated and non-AMF-treated C. glauca seedlings were maintained under two different water regimes (well watered: 80 % field capacity; drought stress: 40 % field capacity) for 90 days. The AMF colonization rate was higher under well-watered conditions compared to drought stress conditions. The growth and physiological performance of C. glauca seedlings were significantly affected by drought stress. Under drought stress conditions, mycorrhizal seedlings had greater height, base diameter, leaf area, and biomass compared to non-mycorrhizal seedlings. In addition, under drought conditions, AMF-inoculated seedlings had greater superoxide dismutase and peroxidase activity, higher soluble sugar content, and lower proline content compared to non-inoculated seedlings. Furthermore, AMF colonization increased the phosphorus and potassium content of seedling shoots under both well-watered and drought stress conditions. Therefore, AMF colonization enhanced the drought tolerance of C. glauca seedlings by improving growth performance, nutrient content, the quantity of osmotic adjustment compounds, and antioxidant enzyme activity. The results indicate that AMF are of potential use for the restoration of vegetation in the karst region of southwest China.  相似文献   

3.
The integration of N2 fixing trees into stable agroforestry systems in the tropics is being tested due to their ability to produce high biomass N and P yields, when symbiotically associated with rhizobia and mycorrhizal fungi. The growth of Centrolobium tomentosum Guill. ex Benth, a native leguminous tree from the Brazilian Atlantic Forest, was assessed with dual inoculation of Rhizobium spp and mycorrhizal fungi under field conditions. Complete fertilization was compared to treatments of inoculation with selected rhizobia strains BHICB-Ab1 or BHICB-Ab3, associated or not to arbuscular mycorrhizal (AM) fungi. The dual inoculation increased the height and growth in relation to the plants treated with rhizobia alone. Plants inoculated with strain BHICB-Ab1 and arbuscular mycorrhizal fungi (AMF) exhibited an increase of 56% dry matter over uninoculated control and nitrogen accumulation was greater than with BHICB-Ab3 inoculated plants. Strain BHICB-Ab1 presented a synergetic relationship with mycorrhizal fungi since the combined inoculation with BHICB-Ab1 enhanced plant height and dry weight more than single inoculation while the growth of BHICB-Ab3 plants was not modified by AMF inoculation. Arbuscular mycorrhizal fungi enhanced plants survival and seemed to favour the nodule occupation by rhizobia strains as compared to the non-mycorrhizal plants. Inoculation with selected rhizobia and AMF improved the growth of C. tomentosum under field conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The benefits of inoculation with six arbuscular mycorrhizal fungi (AMF) isolates (Glomus aggregatum, G. fasciculatum, G. intraradices, G. manihotis, G. mosseae, and G. verriculosum) were investigated on seedlings of Acacia senegal (L.) Willd., a multipurpose tree legume highly valued for arabic gum production. Mycorrhizal root colonization, plant growth and relative mycorrhizal dependency (RMD) were measured in A. senegal seedlings growing in soils from three geographical sites in Senegal (Dahra, Bambey and Goudiry) and two soil conditions (sterilized vs unsterilized) in the glasshouse. The impact of inoculation on mycorrhizal root colonization and plant growth depended on AMF isolates, soil origins and soil conditions. Mycorrhizal root colonization and plant growth were increased in sterilized soils regardless of soil origin and AMF isolates. The degree of RMD of A. senegal seedlings varied with soil origin, soil condition and AMF isolates. A. senegal showed the highest RMD values, reaching a maximum of 45 %, when inoculated with G. manihotis. However, in unsterilized soils, no significant effect of AMF inoculation on plant growth was observed despite significant root colonization with certain AMF isolates in Dahra and Goudiry soils. This indicates that the most infective AMF isolates were not the most effective and unsterilized soils may contain effective mycorrhizal propagules. In conclusion, it is important to consider the native mycorrhizal component of the soils before harnessing mycorrhizal inoculation programs for sustainable agroforestry systems.  相似文献   

5.
We investigated the role of tetrapartite associations between an arbuscular mycorrhizal (AM) fungus (Glomus geosporum), phosphate solubilizing bacteria (Paenibacillus polymyxa), Frankia and Casuarina equisetifolia on growth, nutrient acquisition, nutrient utilization and seedling quality of C. equisetifolia. Seedlings of C. equisetifolia were grown in an Alfisol soil and inoculated with G. geosporum, P. polymyxa and Frankia either individually or in combinations. Inoculation of bioinoculants stimulated seedling growth, the efficiency of nutrient uptake and improved seedling quality. However, microbial inoculation generally reduced the efficiency of nutrient utilization in dry matter production (nutrient use efficiency). Inoculation of P. polymyxa or Frankia increased the extent of AM colonization, which resulted in the accumulation of the nutrients. Seedlings inoculated with Frankia and G. geosporum had more, and heavier nodules compared to seedlings inoculated with Frankia alone. Dual inoculation of microbes was more effective than individual inoculations. The growth response of seedlings to inoculation involving all the microbes was greater than the response to either individual or dual inoculations. The results of this study showed that the tetrapartite association could improve the growth, nutrient acquisition and seedling quality of C. equisetifolia under tropical nursery conditions.  相似文献   

6.
The effects of two fungicides (benomyl and captan ‐ at recommended doses and up to three soil drenches) on root development and mycorrhizal colonization of Sitka‐spruce (Picea sitchensis) and ash (Fraxinus excelsior) were examined after 20 weeks growth, under environmentally controlled conditions, in soil from an Irish tree nursery. Although four mycorrhizal types have been found on Sitka‐spruce at the nursery, only one ectomycorrhizal type (Piceirhiza horti‐inflata) was identified on the short roots in this study. An inoculant (Vaminoc: MicroBio Ltd, Hemel Hempstead, UK) was used to inoculate ash and 20‐week‐old seedlings had a higher arbuscular mycorrhizal (AM) colonization in comparison with uninoculated controls. Multiple applications (2–3) of benomyl reduced the length of root and shoot and shoot dry mass of Sitka‐spruce, whereas in ash, it only depressed root length. Benomyl decreased the numbers of ectomycorrhizas of Sitka‐spruce and arbuscular mycorrhizal colonization of Vaminoc‐inoculated ash. A single application of captan stimulated root length and ectomycorrhizal colonization of Sitka‐spruce and root dry mass in ash compared with uninoculated controls. Applications of captan reduced arbuscular mycorrhizal colonization of Vaminoc‐inoculated ash to levels near to those of uninoculated controls. Of the two fungicides used, benomyl had the most deleterious effect on root length and mycorrhizal colonization of Sitka‐spruce and ash.  相似文献   

7.
R. K. Singh  P. Gogoi 《林业研究》2012,23(2):339-344
Arbuscular mycorrhizal (AM) technology is a soil-based fertilization practice for sustainable crop productivity. We evaluated six indigenous Arbuscular mycorrhizal fungi (AMF) strains for their symbiotic response with Piper longum (long pepper), a non-timber forest product holding promise as a commercial crop for its medicinal fruits and roots. Piper saplings were raised in a 10 cm thick sand and soil mix inoculated with various AMF. Under field conditions, plants inoculated with AMF demonstrated better survival (≥80%) than non mycorrhizal plants (58%). Almost all the studied AMF strains increased the plant growth, biomass and nutrient content (N and P) over the uninoculated control. Mycorrhizal inoculation with four AMF species, viz: Glomus fasciculatum, G. clarum, G. etunicatum and G. versiforme greatly enhanced long pepper growth both in the nursery and field conditions.  相似文献   

8.
丛枝菌根对喜树幼苗的生长效应   总被引:2,自引:0,他引:2  
赵昕  于涛  王洋  阎秀峰 《林业研究》2006,17(2):121-123
2005年2月精选喜树种子培养无菌根幼苗,生长90天以后分别接种3种丛枝菌根真菌,即蜜色无梗囊霉(Acaulospora mellea)、透光球囊霉(Glomus diaphanum)和弯丝硬囊霉(Sclerocystis sinuosa),探讨了菌根真菌对喜树幼苗株高、生物量以及氮、磷吸收的影响。结果表明,丛枝菌根的形成显著促进了菌根幼苗的高生长和生物量的积累,对喜树幼苗氮素营养的吸收影响不大,但却有利于喜树幼苗对磷素营养的吸收。从植株高度和生物量来看,菌根幼苗优于无菌根幼苗,蜜色无梗囊霉菌根幼苗尤为突出,分别达到无菌根幼苗(CK)的1.2和1.6倍,差异显著。丛枝菌根的形成对喜树幼苗氮素营养的吸收影响不大。从全株的氮含量来看,菌根幼苗与无菌根幼苗相近,只有在根、茎和叶片中Am菌根幼苗的氮含量才有明显变化,而透光球囊霉和弯丝硬囊霉菌根幼苗与无菌根幼苗之间则没有显著差异。丛枝菌根的形成总体上促进了喜树幼苗对磷素营养的吸收,并且主要体现在根的磷含量上。与无菌根幼苗比,所有菌根幼苗根的氮、磷分配比例增加,而茎和叶片的氮、磷分配比例减少。图2表2参13。  相似文献   

9.
山地木麻黄菌根菌的筛选和接种效应的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用3个内生菌根菌(AMF)和6个外生菌根菌(ECMF)接种山地木麻黄苗,测定小苗的树高、根长、地径、地上干质量、地下干质量和总生物量,并在干旱胁迫下测定小苗的保存率.结果表明:接种内、外生菌根菌后都能极显著地促进山地木麻黄苗期的生长;山地木麻黄对供试的AMF和ECMF菌根都属于中等强度或较弱的依赖性;山地木麻黄接种菌根菌后对地上部分(苗高、地径和地上干质量)生长的促进作用比地下部分(根长和地下干质量)要大;在供试的9个菌根菌种和菌株中,AMF比ECMF更能提高山地木麻黄的抗旱力;筛选出菌根效应较好的菌根菌有:苏格兰球囊霉90068、苏格兰球囊霉90036、地表球囊霉9004、黄硬皮马勃0207、蜡蘑E439,可在山地木麻黄苗期接种应用.  相似文献   

10.
We conducted a study to find out if arbuscular mycorrhizal (AM) fungi (Acaulospora scrobiculata, Scutellospora calospora) and phosphate solubilizing bacteria (PSB, Paenibacillus polymyxa) inoculation either individually or in combinations can improve Acacia auriculiformis seedling growth, uptake of nutrients and quality in a phosphorus deficient tropical Alfisol. The seedlings were assessed for various growth and nutrient uptake parameters after 60 days of treatment. Inoculation with P. polymyxa stimulated mycorrhizal formation. Seedling height, stem girth, taproot length, number of leaves and leaf area, plant dry matter production, nodulation, and nodular dry weight were significantly higher for seedlings that were either dual inoculated or triple inoculated compared to individual inoculation of AM fungi or PSB, and uninoculated seedlings. Dual and triple application of AM fungi and PSB also significantly improved the nutrient contents of shoots and roots and nutrient uptake efficiencies. The calculated seedling quality indexes of the AM fungi and PSB inoculated seedling were 25–208% higher than uninoculated seedlings. These findings show that A. auriculiformis seedlings when dual inoculated or triple inoculated performed better than seedlings inoculated with the microbes individually and compared with uninoculated control seedlings. We conclude that bioinoculation is important for the production of high-quality A. auriculiformis seedlings in tree nurseries for planting in nutrient deficient soils.  相似文献   

11.
麻栎菌根化幼苗对水分胁迫的响应   总被引:3,自引:0,他引:3  
水分胁迫下,将麻栎接种菌根化幼苗与未接种苗进行耐旱性对比试验.结果表明,随着水分胁迫的加剧,接种菌根化幼苗比未接种苗的土壤含水率、光合色素含量、硝酸还原酶活性、幼苗含水率、根系活力下降幅度低,但根系质膜相对透性和丙二醛含量上升幅度前者比后者小.此结果说明菌根化幼苗比非接种苗抗旱性强.  相似文献   

12.

Key message

Selection of the best salt-tolerant combination of Casuarina sp. and arbuscular mycorrhizal fungi (AMF) is one of the key criteria for successful setup of saline land rehabilitation program.

Context

Land salinization is a serious problem worldwide that mainly leads to soil degradation and reduces crop productivity. These degraded areas could be rehabilitated by planting salt-tolerant species like Casuarina glauca Sieb. and Casuarina equisetifolia L. These are pioneer plants, able to form symbiotic associations with arbuscular mycorrhizal fungi (AMF), ectomycorrhizal fungi (EMF), and nitrogen-fixing bacteria.

Aims

The aim of this study was to select the highest salt-tolerant combination of Casuarina/AMF that can be used for the rehabilitation of lands degraded by salinity.

Methods

C. equisetifolia and C. glauca were grown in sandy sterile soil in the greenhouse and inoculated separately with Rhizophagus fasciculatus (Thaxt.) C. Walker & A. Schüßler, Rhizophagus aggregatus (N.C. Schenck & G.S. Sm.) C. Walker, and Rhizophagus intraradices (N.C. Schenck & G.S. Sm.) C. Walker & A. Schüßler. After confirming the establishment of a symbiosis, the plants were watered with gradually increasing concentrations of saline solution. After harvest, size and biomass of the seedlings, root colonization by AMF, and AMF metabolic activities were evaluated.

Results

A larger growth was obtained in the two species when the individuals were inoculated with R. fasciculatus. Root colonization rates did not differ among fungal species, but fungal metabolic activities were higher in mycorrhizal roots of C. glauca plants inoculated with R. fasciculatus.

Conclusion

Among the three mycorrhizal fungi, R. fasciculatus was more efficient in association with Casuarinaceae species under salt stress. Our results suggest that selection of appropriate fungal strains is crucial to improve plant performance in saline soils.
  相似文献   

13.
Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been highly recommended. Greenhouse bioassays were set up to determine the influence of three different soils on growth and phosphorous nutrition of Polylepis australis seedlings. Soils were collected from a grassland, a rare mature forest and a forest degraded due to repeated fires. We identified the arbuscular mycorrhizal fungi (AMF) present in the three soils and after 12 months we harvested the seedlings to evaluate root and shoot biomass, plant P content and root colonization by native AMF and dark septate endophytes (DSE). The soil inocula contained 26 AMF morphospecies. Grassland inoculum showed the highest AMF richness, and mature forest showed a different AMF community assembly from grassland and degraded forest inocula. Root biomass and root colonization were highest in seedlings inoculated with mature forest soil, meanwhile shoot biomass and plant P content were similar between all treatments. AMF colonization correlated negatively with DSE and root biomass was negatively correlated with DSE colonization, thus these fungal symbionts could be competing for resources. Our results indicate that AMF inoculum from the mature forest stand has the potential to improve P. australis performance, probably due to the dominance of Glomeraceae and Acaulosporaceae families. However, other soil microorganisms could be together with AMF in the natural inocula, affecting the growth response of P. australis seedlings. Future studies evaluating the effect of these inocula under field conditions should be carried out.  相似文献   

14.
The tree species Alnus acuminata and Morella pubescens, native to South America, are candidates for soil quality improvement and afforestation of degraded areas and may serve as nurse trees for later inter-planting of other trees, including native crop trees. Both species not only form symbioses with arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF), but also with N2-fixing actinobacteria. Because tree seedlings inoculated with appropriate mycorrhizal fungi in the nursery resist transplanting stress better than non-mycorrhizal seedlings, we evaluated for A. acuminata and M. pubescens the potential of inoculation with mycorrhizal fungi for obtaining robust tree seedlings. For the first time, a laboratory-produced mixed AMF inoculum was tested in comparison with native soil from stands of both tree species, which contains AMF and EMF. Seedlings of both tree species reacted positively to both types of inocula and showed an increase in height, root collar diameter and above- and belowground biomass production, although mycorrhizal root colonization was rather low in M. pubescens. After 6 months, biomass was significantly higher for all mycorrhizal treatments when compared to control treatments, whereas aboveground biomass was approximately doubled for most treatments. To test whether mycorrhiza formation positively influences plant performance under reduced water supply the experiment was conducted under two irrigation regimes. There was no strong response to different levels of watering. Overall, application of native soil inoculum improved growth most. It contained sufficient AMF propagules but potentially also other soil microorganisms that synergistically enhance plant growth performance. However, the AMF inoculum pot-produced under controlled conditions was an efficient alternative for better management of A. acuminata and M. pubescens in the nursery, which in the future may be combined with defined EMF and Frankia inocula for improved management practices.  相似文献   

15.
采用人工模拟水分胁迫方法,对马尾松菌根化和非菌根化容器苗的耐旱性进行研究,结果表明,水分胁迫可显著降低马尾松容器苗土壤中的水分含量,对菌根化苗和非菌根化苗光合色素、硝酸还原酶、丙二醛等生理物质含量、水分含量和根系活力均有显著影响。但在同等程度的水分胁迫条件下,菌根化苗所受的影响明显低于非菌根化苗,其光合能力、降低水分蒸腾能力、减轻细胞膜受损能力、根系活力和苗木含水率均高于非菌根化苗,这表明菌根化苗的耐旱性高于非菌根化苗。因此,为提高马尾松容器苗的耐旱能力和造林成活率,采用印度块菌子囊果匀浆制成的孢子悬浮液对苗木进行接种菌根处理是可行的。  相似文献   

16.
木麻黄是我国沿海防护林基干林带中的主栽树种,与土壤中的微生物可以形成共生关系,提高自身耐干旱、抗贫瘠、抗盐碱等适应恶劣环境的能力。土壤中的细菌和真菌能够与木麻黄根系形成稳定的相互作用的微生态系统,其中微生物主导的物质代谢循环是植物获取营养的主要来源之一,反之木麻黄的根系分泌物可以为微生物的生长提供养分。文中综述了木麻黄与根系微生物之间相互作用的相关研究,尤其是接种弗兰克氏菌(Frankia)及菌根菌提高木麻黄抗逆性方面的研究进展,对木麻黄与根系微生物体系的促生、抗逆机制进行了探讨和展望。  相似文献   

17.
9 mycorrhizal fungi, including 4 ectomycorrhizal fungi (ECMF) and 5 arbuscular mycorrhizal fungi (AMF), were used to explore their effect on seedling growth of Mytilaria laosensis. The study shows that M. laosensis is one of the species with both VAM and ECM. Mycorrhizal infection rate of all ECM inoculation methods reached level 3, and that of AMF infection rate was 88%-93%, of which AM91 became the highest. In different periods, different inoculation treatment expressed different effects on seedling growth. At the end of the experiment, the height, ground diameter, underground dry mass and upper ground dry mass of seedling inoculated with PX0801 and 9006 respectively increased by 71%, 45%, 128%, 184%, and 65%, 54%,150%, 208%, which exhibited the best overall effect. Coinoculated seedlings with AM90036, AM3008 and AM91 had advantages over uninoculated ones in all the tested growth indicators, which suggest to significantly promote the growth of M.laosensis. The results obtained provide reference for mycorrhizal fungi application on M. laosensis.  相似文献   

18.
孟加拉东南部土壤中的砷含量很高,不仅威胁人的健康,而且对土壤也有破坏作用。云南石梓(Gmelina arborea)在孟加拉是个快速生长的树种,也是含砷土壤中的潜力树种。研究评价了含砷试验土中丛枝菌根真菌对云南石梓(Gmelina arborea)生长的影响。播种前,四种不同浓度的砷(10mg·kg-1、25mg·kg-1、50mg·kg-1和100mg·kg-1)被加入到试验土中。记录生长参数,如,植物的根、苗鲜重、干重、冠幅径、根长和苗高、根瘤菌和孢子菌群落。菌根植株较非菌根植株生长好。与其它含砷量高的土壤中植株的生长情况相比,在含砷量为10-mg·kg-1的土壤中,菌根植株和菌根生长效果最佳,菌根植株生物量最高。随着砷浓度的增加,种苗生长,根瘤菌和孢子菌群落均明显降低p0.05)。与非菌根植株比较,菌根植株高生长增加了40%,生物量增加了2.4倍。研究表明,根瘤菌接种可以减少有害土壤中的云南石梓(Gmelina arborea)的初生长的影响。  相似文献   

19.
The effects of Glomus mosseae colonization on the plant growth and drought tolerance of 1-year-old trifoliate Poncirus trifoliata seedlings in potted culture were studied in natural water stress and rewatering conditions. Results showed that arbuscular mycorrhizal (AM) inoculation significantly improved the height, stem diameter, and fresh weight of P. trifoliata seedlings before natural water stress. By the end of the experiment, the survival percentage of AM-transplanted seedlings was 8% higher than those of non-AM ones. During water stress and rewatering, AM significantly increased the contents of soluble sugars and proteins in leaves, and enhanced the activities of superoxide dismutase (SOD), guaiacol peroxidase (G-POD), and catalase (CAT) in either seedling leaves or roots, which indicated that AM colonization could improve the osmotic adjustment response of P. trifoliata, enhance its defense system, and alleviate oxidative damages to membrane lipids and proteins. These results demonstrated that the drought tolerance of P. trifoliata seedlings was increased by inoculation with AM fungi. The functional mechanism underlying the observation that mycorrhizas increased the host’s drought tolerance was closely related to enzymatic and nonenzymatic antioxidant defense systems such as SOD, G-POD, CAT, and soluble protein. Translated from Chinese Journal of Applied Ecology, 2005, 16(3) (in Chinese)  相似文献   

20.
Three VA-mycorrhizal fungi; Glomus occultum, Glomus aggregatum (local isolates) and G. mosseae (strain from Bangalore, India) were inoculated to assess their effect on growth of Acacia mangium in lateritic soil. All inoculations enhanced growth with respect to shoot height, root diameter, leaf area, chlorophyll content and biomass of A. mangium significantly compared to uninoculated control seedlings. G. occultum proved most efficient among the three. The mycorrhizal dependency factor indicated that the growth of A. mangium was 57% dependent on G. occultum, 47% on G. mosseae and 46% on Glomus aggregatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号