首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of amyloid beta-peptide (A-Beta) in the brain. Transthyretin (TTR) is a tetrameric protein of about 55 kDa mainly produced in the liver and choroid plexus of the brain. The known physiological functions of TTR are the transport of thyroid hormone T(4) and retinol, through binding to the retinol binding protein. TTR has also been established as a cryptic protease able to cleave ApoA-I in vitro. It has been described that TTR is involved in preventing A-Beta fibrilization, both by inhibiting and disrupting A-Beta fibrils, with consequent abrogation of toxicity. We further characterized the nature of the TTR/A-Beta interaction and found that TTR, both recombinant or isolated from human sera, was able to proteolytically process A-Beta, cleaving the peptide after aminoacid residues 1, 2, 3, 10, 13, 14,16, 19 and 27, as determined by mass spectrometry, and reversed phase chromatography followed by N-terminal sequencing. A-Beta peptides (1-14) and (15-42) showed lower amyloidogenic potential than the full length counterpart, as assessed by thioflavin binding assay and ultrastructural analysis by transmission electron microscopy. A-Beta cleavage by TTR was inhibited in the presence of an alphaAPP peptide containing the Kunitz Protease Inhibitor (KPI) domain but not in the presence of the secreted alphaAPP derived from the APP isoform 695 without the KPI domain. TTR was also able to degrade aggregated forms of A-Beta peptide. Our results confirmed TTR as a protective molecule in AD, and prompted A-Beta proteolysis by TTR as a protective mechanism in this disease. TTR may prove to be a useful therapeutic agent for preventing or retarding the cerebral amyloid plaque formation implicated in AD pathology.  相似文献   

2.
It has been suggested that transthyretin (TTR) is involved in preventing A-Beta fibrillization in Alzheimer’s disease (AD). Here, we characterized the TTR/A-Beta interaction by competition binding assays. TTR binds to different A-Beta peptide species: soluble (Kd, 28 nM), oligomers and fibrils; diverse TTR variants bind differentially to A-Beta. Transmission electron microscopy (TEM) analysis demonstrated that TTR is capable of interfering with A-Beta fibrillization by both inhibiting and disrupting fibril formation. Co-incubation of the two molecules resulted in the abolishment of A-Beta toxicity. Our results confirmed TTR as an A-Beta ligand and indicated the inhibition/disruption of A-Beta fibrils as a possible mechanism underlying the protective role of TTR in AD.  相似文献   

3.
Transthyretin (TTR) is a 127-residue homotetrameric beta-sheet-rich protein that transports thyroxine in the blood and cerebrospinal fluid. The deposition of fibrils and amorphous aggregates of TTR in patients' tissues is a hallmark of TTR amyloid disease. Familial amyloidotic polyneuropathy is a hereditary form of TTR amyloidosis that is associated with one among 80 different variants of TTR. The most aggressive variants of TTR are V30M, L55P, and A25T, and the propensity to undergo aggregation seems to be linked to tetramer stability. T119M is a very stable, non-amyloidogenic variant of TTR. Here we show that the combination of high hydrostatic pressure with subdenaturing concentrations of urea (4 m) at 1 degrees C irreversibly dissociates T119M into monomers in less than 30 min in a concentration-dependent fashion. After pressure and urea removal, long lived monomers are the only species present in solution. We took advantage of the slow reassociation kinetics of these monomers into tetramers to produce heterotetramers by mixing the T119M monomers with the tetramers of the aggressive mutants of TTR. Our data show that T119M monomers can be successfully incorporated into all of these tetramers even when the exchange is performed in a more physiological environment such as human plasma; these monomers render the resultant heterotetramers less amyloidogenic. The data presented here are relevant for the understanding of T119M folding and association reactions and provide a protocol for producing T119M monomers that function as inhibitors of TTR aggregation when incorporated in to tetramers. This protocol may provide a new strategy for treating TTR diseases for which there is no therapy available other than liver transplantation.  相似文献   

4.
Hou X  Richardson SJ  Aguilar MI  Small DH 《Biochemistry》2005,44(34):11618-11627
Transthyretin (TTR) can deposit as amyloid in the peripheral nervous system and induce a peripheral neuropathy. We examined the mechanism of TTR amyloid neurotoxicity on SH-SY5Y neuroblastoma cells. Wild-type (WT) TTR and two amyloidogenic mutants (V30M and L55P) were expressed in Escherichia coli. Incubation (aging) of WT TTR at 37 degrees C for 1 week caused no significant aggregation. However, there was a significant increase in the extent of amyloid fibril formation after the amyloidogenic mutants had been aged. L55P TTR aggregated more readily than V30M TTR. Both amyloidogenic mutants were neurotoxic after aging. The order of neurotoxicity was as follows: L55P > V30M > WT. As binding of amyloid proteins to the plasma membrane may cause cytotoxicity, we studied the binding of TTR to a plasma membrane-enriched preparation from SH-SY5Y cells by surface plasmon resonance. All three forms bound to the plasma membrane through electrostatic interactions. The binding of the amyloidogenic mutants was increased by aging. The amount of binding correlated closely with the amount of aggregation and with the cytotoxicity of each form. As membrane fluidity can influence cell viability, we also examined the effect of TTR on membrane fluidity using a fluorescence anisotropy method. Binding of the amyloidogenic TTR mutants increased membrane fluidity, and once again, the order of potency was as follows: L55P > V30M > WT. These results demonstrate that TTR can bind to the plasma membrane and cause a change in membrane fluidity. Altered membrane fluidity may be the cause of the neurotoxicity.  相似文献   

5.
Extracellular accumulation of transthyretin (TTR) variants in the form of fibrillar amyloid deposits is the pathological hallmark of familial amyloidotic polyneuropathy (FAP). The TTR Leu55Pro variant occurs in the most aggressive forms of this disease. Inhibition of TTR wild-type (WT) and particularly TTR Leu55Pro fibril formation is of interest as a potential therapeutic strategy and requires a thorough understanding of the fibril assembly mechanism. To this end, we report on the in vitro assembly properties as observed by transmission electron microscopy (TEM), atomic force microscopy (AFM) and quantitative scanning transmission electron microscopy (STEM) for both TTR WT fibrils produced by acidification, and TTR Leu55Pro fibrils assembled at physiological pH. The morphological features and dimensions of TTR WT and TTR Leu55Pro fibrils were similar, with up to 300 nm long, 8 nm wide fibrils being the most prominent species in both cases. Other species were evident; 4-5 nm wide fibrils, 9-10 nm wide fibrils and oligomers of various sizes. STEM mass-per-length (MPL) measurements revealed discrete fibril types with masses of 9.5 and 14.0(+/-1.4) KDa/nm for TTR WT fibrils and 13.7, 18.5 and 23.2(+/-1.5) kDa/nm for TTR Leu55Pro fibrils. These MPL values are consistent with a model in which fibrillar TTR structures are composed of two, three, four or five elementary protofilaments, with each protofilament being a vertical stack of structurally modified TTR monomers assembled with the 2.9 nm axial monomer-monomer spacing indicated by X-ray fibre diffraction data. Ex vivo TTR amyloid fibrils were examined. From their morphological appearance compared to these, the in vitro assembled TTR WT and Leu55Pro fibrils examined may represent immature fibrillar species. The in vitro system operating at physiological pH for TTR Leu55Pro and the model presented for the molecular arrangement of TTR monomers within fibrils may, therefore, describe early fibril assembly events in vivo.  相似文献   

6.
Carriers of the D18G transthyretin (TTR) mutation display an unusual central nervous system (CNS) phenotype with late onset of disease. D18G TTR is monomeric and highly prone to misfold and aggregate even at physiological conditions. Extremely low levels of mutant protein circulate both in human serum and cerebrospinal fluid, indicating impaired secretion of D18G TTR. Recent data show efficient selective ER-associated degradation (ERAD) of D18G TTR. One essential component of the ER-assisted folding machinery is the molecular chaperone BiP. Co-expression of BiP and D18G TTR, or BiP and wild-type (wt) TTR, or mutants A25T TTR and L55P TTR in Escherichia coli showed that only D18G TTR was significantly captured by BiP. Negligible capture of wt TTR and L55P TTR was seen and a sixfold smaller amount of A25T TTR bound to BiP compared to D18G TTR. These data correlate very well with thermodynamic and kinetic stability of the TTR variants, indicating that folding efficiency is inversely correlated to BiP capture. The complexes between BiP and D18G TTR were stable and could be isolated through affinity chromatography. Analytical ultracentrifugation and size-exclusion chromatography revealed that D18G TTR and BiP formed a mixture of 1:1 complexes and large soluble oligomers. The stoichiometry of captured D18G TTR versus BiP increased with increasing size of the oligomers. This indicates that BiP either worked as a molecular shepherd collecting the aggregation-prone mutant into stable oligomers or that BiP could bind to oligomers formed from misfolded mutant protein. Sequence analysis of bound TTR peptides to BiP revealed a bound sequence corresponding to residues 88-103 of TTR, comprising beta-strand F in the folded TTR monomer constituting part of the hydrogen bonding tetramer interface in native TTR. The F-strand has also been suggested as a possible elongation region of amyloid fibrils, implicating how substoichiomeric amounts of BiP could sequester prefibrillar amyloidogenic oligomers through binding to this part of TTR. BiP binding to D18G TTR was abolished by addition of ATP. The released D18G TTR completely misfolded into amyloid aggregates as shown by ThT fluorescence and Congo red binding.  相似文献   

7.
The formation of amyloid aggregates is the hallmark of the amyloidogenic diseases. Transthyretin (TTR) is involved in senile systemic amyloidosis (wild-type protein) and familial amyloidotic polyneuropathy (point mutants). Through the use of high hydrostatic pressure (HHP), we compare the stability among wild-type (wt) TTR, two disease-associated mutations (V30M and L55P) and a trans-suppressor mutation (T119M). Our data show that the amyloidogenic conformation, easily populated in the disease-associated mutant L55P, can be induced by a cycle of compression-decompression with the wt protein rendering the latter highly amyloidogenic. After decompression, the recovered wt structure has weaker subunit interactions (loosened tetramer, T(4)(*)) and presents a stability similar to L55P, suggesting that HHP induces a defective fold in the wt protein, converting it to an altered conformation already present in the aggressive mutant, L55P. On the other hand, glucose, a chemical chaperone, can mimic the trans-suppression mutation by stabilizing the native state and by decreasing the amyloidogenic potential of the wt TTR at pH 5.0. The sequence of pressure stability observed was: L55P相似文献   

8.
Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by the extracellular deposition of the transport protein transthyretin (TTR) as amyloid fibrils. Despite the progress achieved in recent years, understanding why different TTR residue substitutions lead to different clinical manifestations remains elusive. Here, we studied the molecular basis of disease-causing missense mutations affecting residues R34 and K35. R34G and K35T variants cause vitreous amyloidosis, whereas R34T and K35N mutations result in amyloid polyneuropathy and restrictive cardiomyopathy. All variants are more sensitive to pH-induced dissociation and amyloid formation than the wild-type (WT)-TTR counterpart, specifically in the variants deposited in the eyes amyloid formation occurs close to physiological pHs. Chemical denaturation experiments indicate that all the mutants are less stable than WT-TTR, with the vitreous amyloidosis variants, R34G and K35T, being highly destabilized. Sequence-induced stabilization of the dimer–dimer interface with T119M rendered tetramers containing R34G or K35T mutations resistant to pH-induced aggregation. Because R34 and K35 are among the residues more distant to the TTR interface, their impact in this region is therefore theorized to occur at long range. The crystal structures of double mutants, R34G/T119M and K35T/T119M, together with molecular dynamics simulations indicate that their strong destabilizing effect is initiated locally at the BC loop, increasing its flexibility in a mutation-dependent manner. Overall, the present findings help us to understand the sequence-dynamic-structural mechanistic details of TTR amyloid aggregation triggered by R34 and K35 variants and to link the degree of mutation-induced conformational flexibility to protein aggregation propensity.  相似文献   

9.
Protein aggregation into insoluble fibrillar structures known as amyloid characterizes several neurodegenerative diseases, including Alzheimer's, Huntington's and Creutzfeldt‐Jakob. Transthyretin (TTR), a homotetrameric plasma protein, is known to be the causative agent of amyloid pathologies such as FAP (familial amyloid polyneuropathy), FAC (familial amyloid cardiomiopathy) and SSA (senile systemic amyloidosis). It is generally accepted that TTR tetramer dissociation and monomer partial unfolding precedes amyloid fibril formation. To explore the TTR unfolding landscape and to identify potential intermediate conformations with high tendency for amyloid formation, we have performed molecular dynamics unfolding simulations of WT‐TTR and L55P‐TTR, a highly amyloidogenic TTR variant. Our simulations in explicit water allow the identification of events that clearly discriminate the unfolding behavior of WT and L55P‐TTR. Analysis of the simulation trajectories show that (i) the L55P monomers unfold earlier and to a larger extent than the WT; (ii) the single α‐helix in the TTR monomer completely unfolds in most of the L55P simulations while remain folded in WT simulations; (iii) L55P forms, early in the simulations, aggregation‐prone conformations characterized by full displacement of strands C and D from the main β‐sandwich core of the monomer; (iv) L55P shows, late in the simulations, severe loss of the H‐bond network and consequent destabilization of the CBEF β‐sheet of the β‐sandwich; (v) WT forms aggregation‐compatible conformations only late in the simulations and upon extensive unfolding of the monomer. These results clearly show that, in comparison with WT, L55P‐TTR does present a much higher probability of forming transient conformations compatible with aggregation and amyloid formation.  相似文献   

10.
Transthyretin (TTR) is one of the known human amyloidogenic proteins. Its native state is a homotetramer with each monomer having a beta-sandwich structure. Strong experimental evidence suggests that TTR dissociates into monomeric intermediates and that the monomers subsequently self-assemble to form amyloid deposits and insoluble fibrils. However, details on the early steps along the pathway of TTR amyloid formation are unclear, although various experimental approaches with resolutions at the molecular or residue level have provided some clues. It is highly likely that the stability and flexibility of monomeric TTR play crucial roles in the early steps of amyloid formation; thereby, it is essential to characterize initial conformational changes of TTR monomers. In this article we probe the possibility that the differences in the monomeric forms of wild-type (WT) TTR and its variants are responsible for differential amyloidogenesis. We begin with the simulations of WT, Val30-->Met (V30M), and Leu55-->Pro (L55P) TTR monomers. Nanosecond time scale molecular dynamics simulations at 300 K were performed using AMBER. The results indicate that the L55P-TTR monomer undergoes substantial structural changes relative to fluctuations observed in the WT and V30M TTR monomers. The observation supports earlier speculation that the L55P mutation may lead to disruption of the beta-sheet structure through the disorder of the "edge strands" that might facilitate amyloidogenesis.  相似文献   

11.
Transthyretin (TTR) is an amyloidogenic protein whose aggregation is responsible for numerous familial amyloid diseases, the exact phenotype being dependent on the sequence deposited. Many familial disease variants display decreased stability in vitro, and early onset pathology in vivo. Only subtle structural differences were observed upon crystallographic comparison of the disease-associated variants to the T119M interallelic trans-suppressor. Herein three human TTR single amino acid variant homotetramers including two familial amyloidotic polyneuropathy (FAP) causing variants (V30M and L55P), and a suppressor variant T119M (known to protect V30M carriers from disease by trans-suppression) were investigated in a residue-specific fashion by monitoring (2)H-(1)H exchange employing NMR spectroscopy. The measured protection factors for slowly exchanging amide hydrogen atoms reveal destabilization of the protein core in the FAP variants, the core consisting of strands A, B, E and G and the loop between strands A and B. The same core exhibits much slower exchange in the suppressor variant. Accelerated exchange rates were observed for residues at the subunit interfaces in L55P, but not in the T119M or V30M TTR. The correlation between destabilization of the TTR core strands and the tendency for amyloid formation supports the view that these strands are involved in amyloidogenicity, consistent with previous (2)H-(1)H exchange analysis of the WT-TTR amyloidogenic intermediate.  相似文献   

12.
Recently, a new nonpathogenic transthyretin (TTR) variant-TTR R104H (TTR H104)-has been described in heterozygotic and compound heterozygotic individuals from a Japanese family with familial amyloidotic polyneuropathy (FAP). The compound heterozygotic individual, a carrier of TTR V30M (TTR M30) and TTR R104H (TTR M30/H104) presented a very mild form of FAP with slow progression of the disease. TTR and retinol binding protein (RBP) levels were found to be increased in serum from TTR H104 carriers. These characteristics are very similar to those found in compound heterozygotic carriers of TTR V30M-T119M (TTR M30/M119). To structurally compare these variants, we performed stability and thyroxine (T(4)) binding studies. TTR M30/H104 showed an increased resistance to dissociation into monomers similar to TTR M30/M119. This suggests that the His104 substitution has the same stabilizing effect on tetrameric TTR as the Met119 substitution. Concerning T(4) binding, TTR H104 presents a T(4) binding affinity lower than that of TTR M119, but still higher than normal TTR. However, TTR from the compound heterozygotic carrier of TTR M30/H104 presented a T(4) binding affinity lower than normal. The results indicate that the His 104 substitution induces structural alterations that increase the stability of the tetramer in compound heterozygotes for TTR M30 despite a lower affinity for T(4) binding. Thus, stability of TTR and binding affinity for T(4) may not be related. More detailed characterization of these variants is needed to clarify the structural alterations responsible for their increased stability.  相似文献   

13.
Transthyretin (TTR) is an important human transport protein present in the serum and the cerebrospinal fluid. Aggregation of TTR in the form of amyloid fibrils is associated with neurodegeneration, but the mechanisms of cytotoxicity are likely to stem from the presence of intermediate assembly states. Characterization of these intermediate species is therefore essential to understand the etiology and pathogenesis of TTR-related amyloidoses. In the present work we used atomic force microscopy to investigate the morphological features of wild-type (WT) TTR amyloid protofibrils that appear in the early stages of aggregation. TTR protofibrils obtained by mild acidification appeared as flexible filaments with variable length and were able to bind amyloid markers (thioflavin T and Congo red). Surface topology and contour-length distribution displayed a periodic pattern of ~ 15 nm, suggesting that the protofibrils assemble via an end-binding oligomer fusion mechanism. The average height and periodic substructure found in protofibrils is compatible with the double-helical model of the TTR amyloid protofilament. Over time protofibrils aggregated into bundles and did not form mature amyloid-like fibrils. Unlike amyloid fibrils that are typically stable under physiological conditions, the bundles dissociated into component protofibrils with axially compacted and radially dilated structure when exposed to phosphate-buffered saline solution. Thus, WT TTR can form metastable filamentous aggregates that may represent an important transient state along the pathway towards the formation of cytotoxic TTR species.  相似文献   

14.
TTR (transthyretin) amyloidoses are diseases characterized by the aggregation and extracellular deposition of the normally soluble plasma protein TTR. Ex vivo and tissue culture studies suggest that tissue damage precedes TTR fibril deposition, indicating that early events in the amyloidogenic cascade have an impact on disease development. We used a human cardiomyocyte tissue culture model system to define these events. We previously described that the amyloidogenic V122I TTR variant is cytotoxic to human cardiac cells, whereas the naturally occurring, stable and non-amyloidogenic T119M TTR variant is not. We show that most of the V122I TTR interacting with the cells is extracellular and this interaction is mediated by a membrane protein(s). In contrast, most of the non-amyloidogenic T119M TTR associated with the cells is intracellular where it undergoes lysosomal degradation. The TTR internalization process is highly dependent on membrane cholesterol content. Using a fluorescent labelled V122I TTR variant that has the same aggregation and cytotoxic potential as the native V122I TTR, we determined that its association with human cardiomyocytes is saturable with a KD near 650 nM. Only amyloidogenic V122I TTR compete with fluorescent V122I for cell-binding sites. Finally, incubation of the human cardiomyocytes with V122I TTR but not with T119M TTR, generates superoxide species and activates caspase 3/7. In summary, our results show that the interaction of the amyloidogenic V122I TTR is distinct from that of a non-amyloidogenic TTR variant and is characterized by its retention at the cell membrane, where it initiates the cytotoxic cascade.  相似文献   

15.
H A Lashuel  C Wurth  L Woo  J W Kelly 《Biochemistry》1999,38(41):13560-13573
The L55P transthyretin (TTR) familial amyloid polyneuropathy-associated variant is distinct from the other TTR variants studied to date and the wild-type protein in that the L55P tetramer can dissociate to the monomeric amyloidogenic intermediate and form fibril precursors under physiological conditions (pH 7.0, 37 degrees C). The activation barrier associated with L55P-TTR tetramer dissociation is lower than the barrier for wild-type transthyretin dissociation, which does not form fibrils under physiological conditions. The L55P-TTR tetramer is also very sensitive to acidic conditions, readily dissociating to form the monomeric amyloidogenic intermediate between pH 5.5-5.0 where the wild-type TTR adopts a nonamyloidogenic tetrameric structure. The formation of the L55P monomeric amyloidogenic intermediate involves subtle tertiary structural changes within the beta-sheet rich subunit as discerned from Trp fluorescence, circular dichroism analysis, and ANS binding studies. The assembly of the L55P-TTR amyloidogenic intermediate at physiological pH (pH 7.5) affords protofilaments that elongate with time. TEM studies suggest that the entropic barrier associated with filament assembly (amyloid fibril formation) is high in vitro, amyloid being defined by the laterally assembled four filament structure observed by Blake upon isolation of "fibrils" from the eye of a FAP patient. The L55P-TTR protofilaments formed in vitro bind Congo red and thioflavin T (albeit more weakly than the fibrils produced at acidic pH), suggesting that the structure observed probably represents an amyloid precursor. The structural continuum from misfolded monomer through protofilaments, filaments, and ultimately fibrils must be considered as a possible source of pathology associated with these diseases.  相似文献   

16.
Urea denaturation studies were carried out as a function of transthyretin (TTR) concentration to quantify the thermodynamically linked quaternary and tertiary structural stability and to improve our understanding of the relationship between mutant folding energetics and amyloid disease phenotype. Urea denaturation of TTR involves at least two equilibria: dissociation of tetramers into folded monomers and monomer unfolding. To deal with the thermodynamic linkage of these equilibria, we analyzed concentration-dependent denaturation data by globally fitting them to an equation that simultaneously accounts for the two-step denaturation process. Using this method, the quaternary and tertiary structural stabilities of well-behaved TTR sequences, wild-type (WT) TTR and the disease-associated variant V122I, were scrutinized. The V122I variant is linked to late onset familial amyloid cardiomyopathy, the most common familial TTR amyloid disease. V122I TTR exhibits a destabilized quaternary structure and a stable tertiary structure relative to those of WT TTR. Three other variants of TTR were also examined, L55P, V30M, and A25T TTR. The L55P mutation is associated with the most aggressive familial TTR amyloid disease. L55P TTR has a complicated denaturation pathway that includes dimers and trimers, so globally fitting its concentration-dependent urea denaturation data yielded error-laden estimates of stability parameters. Nevertheless, it is clear that L55P TTR is substantially less stable than WT TTR, primarily because its tertiary structure is unstable, although its quaternary structure is destabilized as well. V30M is the most common mutation associated with neuropathic forms of TTR amyloid disease. V30M TTR is certainly destabilized relative to WT TTR, but like L55P TTR, it has a complex denaturation pathway that cannot be fit to the aforementioned two-step denaturation model. Literature data suggest that V30M TTR has stable quaternary structure but unstable tertiary structure. The A25T mutant, associated with central nervous system amyloidosis, is highly aggregation-prone and exhibits drastically reduced quaternary and tertiary structural stabilities. The observed differences in stability among the disease-associated TTR variants highlight the complexity and heterogeneity of TTR amyloid disease, an observation that has important implications for the treatment of these maladies.  相似文献   

17.
Destabilization of the tetrameric fold of TTR (transthyretin) is important for aggregation of the protein which culminates in amyloid fibril formation. Many TTR mutations interfere with tetramer stability, increasing the amyloidogenic potential of the protein. The vast majority of proposed TTR fibrillogenesis inhibitors are based on in vitro assays with isolated protein, limiting their future use in clinical assays. In the present study we investigated TTR fibrillogenesis inhibitors using a cellular system that produces TTR intermediates/aggregates in the medium. Plasmids carrying wild-type TTR, V30M or L55P cDNA were transfected into a rat Schwannoma cell line and TTR aggregates were investigated in the medium using a dot-blot filter assay followed by immunodetection. Results showed that, in 24 h, TTR L55P forms aggregates in the medium, whereas, up to 72 h, wild-type TTR and V30M do not. A series of 12 different compounds, described in the literature as in vitro TTR fibrillogenesis inhibitors, were tested for their ability to inhibit L55P aggregate formation; in this system, 2-[(3,5-dichlorophenyl) amino] benzoic acid, benzoxazole, 4-(3,5-difluorophenyl) benzoic acid and tri-iodophenol were the most effective inhibitors, as compared with the reference iododiflunisal, previously shown by ex vivo and in vitro procedures to stabilize TTR and inhibit fibrillogenesis. Among these drugs, 2-[(3,5-dichlorophenyl) amino] benzoic acid and tri-iodophenol stabilized TTR from heterozygotic carriers of V30M in the same ex vivo conditions as those used previously for iododiflunisal. The novel cellular-based test herein proposed for TTR fibrillogenesis inhibitor screens avoids not only lengthy and cumbersome large-scale protein isolation steps but also artefacts associated with most current in vitro first-line screening methods, such as those associated with acidic conditions and the absence of serum proteins.  相似文献   

18.
Familial Amyloidotic Polyneuropathy (FAP) is caused by the assembly of TTR into an insoluble beta-sheet. The TTR tetramer is thought to dissociate into monomeric intermediates and subsequently polymerise into the pathogenic amyloid form. The biochemical mechanism behind this transformation is unknown. We characterised intermediate TTR structures in the in vitro amyloidogenesis pathway by destabilising the AB loop through substitution of residue 78. Changes at this residue, should destabilise the TTR tetrameric fold, based on the known crystallographic structure of a Leu55Pro transthyretin variant. We generated a soluble tetrameric form of TTR that is recognised by a monoclonal antibody, previously reported to react only with highly amyloidogenic mutant proteins lacking the tetrameric native fold and with amyloid fibrils. BIAcore system analysis showed that Tyr78Phe had similar binding properties as synthetic fibrils. The affinity of this interaction was 10(7) M(-1). We suggest that the tetrameric structure of Tyr78Phe is altered due to the loosening of the AB loops of the tetramer, leading to a structure that might represent an early intermediate in the fibrillogenesis pathway.  相似文献   

19.
The deposition of transthyretin (TTR) amyloid in the PNS is a major pathological feature of familial amyloidotic polyneuropathy. The aim of the present study was to examine whether TTR could disrupt cytoplasmic Ca(2+) homeostasis and to determine the role of TTR aggregation in this process. The aggregation of amyloidogenic TTR was examined by solution turbidity, dynamic light scattering and atomic force microscopy. A nucleation-dependent polymerization process was observed in which TTR formed low molecular weight aggregates (oligomers < 100 nm in diameter) before the appearance of mature fibrils. TTR rapidly induced an increase in the concentration of intracellular Ca(2+) ([Ca(2+)](i)) when applied to SH-SY5Y human neuroblastoma cells. The greatest effect on [Ca(2+)](i) was induced by a preparation that contained the highest concentration of TTR oligomers. The TTR-induced increase in [Ca(2+)](i) was due to an influx of extracellular Ca(2+), mainly via L- and N-type voltage-gated calcium channels (VGCCs). These results suggest that increasing [Ca(2+)](i) via VGCCs may be an important early event which contributes to TTR-induced cytotoxicity, and that TTR oligomers, rather than mature fibrils, may be the major cytotoxic form of TTR.  相似文献   

20.
Deposition of amorphous aggregates and fibrils of transthyretin (TTR) in leptomeninges and subarachnoid vessels is a characteristic of leptomeningeal amyloidosis (LA), a currently untreatable cerebral angiopathy. Herein, we report the X-ray structure of the A25T homotetramer of TTR, a natural mutant described in a patient with LA. The structure of A25T-TTR is indistinguishable from that of wild-type TTR (wt-TTR), indicating that the difference in amyloidogenicity between A25T-TTR and wt-TTR cannot be ascribed to gross structural differences. Using pressure-induced dissociation of the tetramer, we show that A25T-TTR is 3 kcal/mol less stable than L55P-TTR, the most aggressive mutant of TTR described to date. After incubation for 15 days at 37 °C (pH 7.3), A25T-TTR forms mature amyloid fibrils. To mimic the environment in which TTR aggregates, we investigated aggregation in cerebrospinal fluid (CSF). Unlike L55P-TTR, A25T-TTR rapidly forms amyloid aggregates in CSF that incorporated several protein partners. Utilizing a proteomics methodology, we identified 19 proteins that copurified with A25T-TTR amyloid fibrils. We confirmed the presence of proteins previously identified to be associated with TTR aggregates in biopsies of TTR amyloidosis patients, such as clusterin, apolipoprotein E, and complement proteins. Moreover, we identified novel proteins, such as blood coagulation proteins. Overall, our results revealed the in vitro characterization of TTR aggregation in a biologically relevant environment, opening new avenues of investigation into the molecular mechanisms of LA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号