首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用不同浓度的ZnCl_2溶液对椰壳活性炭进行表面改性以制备高容量氨吸附用活性炭,并采用低温液氮吸附(BET)、扫描电镜(SEM)、Boehm滴定对改性前后活性炭的物理结构及表面含氧官能团进行了测定,同时以常温动态吸附对氨吸附容量及吸附动力学进行了研究,并对ZnCl_2活性炭氨吸附去除机理进行了分析。结果表明:改性后活性炭微孔数量减少,介孔比例提高;随ZnCl_2浓度的增加,活性炭的比表面积、孔容减小,平均孔径变大,介孔所占比例由23.00%增加到25.52%;改性后活性炭表面含氧官能团含量增加,质量比为11%的ZnCl_2浸渍的活性炭样品(AC3)总酸性含氧官能团增加最多,增加了0.259mmol·g~(-1)。浸渍ZnCl_2溶液改性对活性炭吸附氨性能的改善十分明显,样品AC3对氨气的吸附量(75.58 mg·g-1)为原始活性炭(12.5 mg·g-1)的6.05倍;吸附动力学模型研究得出,氨在改性前后活性炭样品上的吸附与准二阶动力学模型较符合,说明吸附反应过程为物理-化学联合吸附。  相似文献   

2.
以活性炭为原料,吡咯为改性剂FeCl_3为氧化剂,原位化学氧化法改性电吸附电极。以比电容为指标,采用单因素法分析,确定最优改性工艺,并对该工艺条件下制备的样品进行比表面积、表面形貌和电化学性能的表征。结果表明,在活性炭质量为2.0g,吡咯浓度为2mol·L~(-1)及FeCl_3浓度为2mol·L~(-1)时,改性的活性炭比电容值高达270.36F·g~(-1);改性后活性炭的比表面积、孔径和孔容分别降低了10.47%、51.18%和45.71%,孔隙结构以微孔为主;且改性后电极的平均接触角从85.7°减小到60.45°,比电容由89.66 F·g~(-1)增加到283.5F·g~(-1),提高了68.37%;将最佳配比改性的电极应用于除盐小试中除盐率可达45.36%。本实验的研究为电吸附电极除盐性能及导电聚合物的深入研究提供理论基础。  相似文献   

3.
吴沁如  李海红  张腾 《现代化工》2024,(3):168-174+181
以煤质活性炭(AC)为研究对象,通过(NH4)2S2O8氧化改性提高其电吸附性能。将活性炭材料制备成电极并在电容去离子技术(EST)下进行实验,对改性前后活性炭的表面形貌、表面官能团、孔结构变化进行对比分析。结果表明,活性炭经过1.5 mol/L的(NH4)2S2O8改性后比电容最大;改性后的活性炭电极比电容增大,改性后相比改性前孔容、平均孔径均下降;改性后的材料表面光滑、杂质较少、孔隙结构发达、含氧官能团增多;利用单因素和Box-Behnken响应面法得到改性后材料制备的最佳工艺为:1.59 g的AC在54.22℃下氧化改性4.93 h,电极比电容为259.850 F/g,改性后电极的CV曲线证明由于其含有赝电容从而使电化学性能得到提高。  相似文献   

4.
不同磷酸活化工艺过程对活性炭孔结构的影响   总被引:4,自引:0,他引:4  
以毛竹废料为原料采用磷酸活化法制备活性炭,为了考察磷酸活化工艺过程对活性炭孔结构的影响,实验将毛竹在炭化前后分别采用磷酸浸渍并活化,根据77 K氮气吸附等温线对产品结构进行了表征.实验结果表明:磷酸浸渍毛竹活化过程所得产品不仅具有较高比表面积(1 485~2 127 m2·g-1)且含有大量中孔,产品中孔体积为0.43~0.67 cm3·g-1,总孔体积高达1.53 cm3·g-1.磷酸浸渍炭化料活化过程所得活性炭没有中孔产生,最高比表面积及总孔容分别为923 m2·g-1,0.35cm3·g-1.可见磷酸浸渍毛竹活化过程更有利于孔隙发达活性炭的制备.  相似文献   

5.
采用氯代十六烷基吡啶(CPC)对活性炭(PAC)进行改性,以提高活性炭电极的电化学性能和吸附性能。结果表明,以CPC-PAC-1 mm/5 h为电极材料,以m(CB):m(PVDF):m(CPC-PAC)=15:5:80制备的改性活性炭电极(CB/PVDF/CPC-PAC-15/5/80电极)的比电容为123.8 F/g,较未改性PAC电极的比电容(46 F/g)提升了169%。对100μg/L砷溶液的吸附结果表明,相比未改性PAC电极,CB/PVDF/CPC-PAC-15/5/80电极对砷离子的吸附量提升了29%,出水砷仅为7μg/L。  相似文献   

6.
采用浸渍煅烧法对活性炭纤维进行Al_2O_3负载改性,对改性前后活性炭纤维的微观结构、电化学性能和除盐性能进行分析比较,并探讨了影响其电吸附除盐效果的影响因素,结果表明:改性后活性炭纤维电吸附除盐性能得到极大增强,除盐能力为改性前的2.68倍。且电极具备很好的再生性;其表面出现了絮状和颗粒状的Al_2O_3,比表面积减小,中孔增加,孔径分布更加合理,比电容提高了2.1倍。当电压为2.0 V,极板间距为1 cm,NaCl质量浓度为500 mg/L时,除盐效率可达到64.6%。  相似文献   

7.
低浓度氰化氢在浸渍活性炭上的吸附净化研究   总被引:1,自引:0,他引:1  
采用浸渍法改性活性炭吸附脱除低浓度氰化氢(HCN),研究了NaOH与磺化酞菁钴(CoPcS)混合浸渍改性活性炭净化HCN的性能。研究表明:改性炭在制备过程中适当增加NaOH的浓度有利于提高其吸附HCN的能力,当NaOH浸渍液浓度为10%时,CoPcS/NaOH配比0.15mg·g-1、焙烧温度350℃为最佳制备条件;吸附反应阶段较适宜的体积空速为923h-1、氧体积分数2%、吸附温度为90℃。N2吸附表征了活性炭的比表面积和孔结构性质,与原活性炭相比,CoPcS与NaOH混合浸渍改性活性炭的比表面积和孔体积有所降低,但对HCN的吸附能力却显著提高,说明HCN与浸渍剂在活性炭表面发生了化学反应;孔径分布说明HCN在改性炭的中孔或大孔上参与化学吸附造成微孔扩充,而不是微孔填充和覆盖。  相似文献   

8.
以十六烷基三甲基溴化铵作为表面活性剂,异烟酰胺丙基三乙氧基硅烷与正硅酸乙酯一步法缩合反应制备吡啶功能化介孔硅材料(PFM),并研究其对2,4-二硝基苯酚和汞离子的吸附性能。实验结果表明,PFM的比表面积高达559.15 m2·g-1,可以作为一种优秀的吸附剂,对2,4-二硝基苯酚的吸附量达到220.75 mg·g-1,对汞离子的吸附量达到10.83 mg·g-1。  相似文献   

9.
活性炭的改性及其对苯酚吸附行为的研究   总被引:1,自引:0,他引:1  
通过正交试验的方法,优化活性炭的改性条件;并以活性炭为载体,氢氧化钠溶液为改性剂,在最优条件下制备改性活性炭;测定了改性前后活性炭的比表面积及表面酸性官能团的含量;考察了改性前后活性炭对苯酚的吸附行为。结果表明,在NaOH溶液浓度为0.1mol/l,浸渍时间为3h,活化时间为3h,活化温度为400℃的情况下,改性活性炭吸附效果最佳,苯酚吸附量为149.05mg/g,比未改性活性炭的吸附量提高了61.97%;NaOH-改性活性炭的比表面积为1046.10m2/g,比未改性活性炭的比表面积增加了12.42%,改性后表面的酸性基团含量降低,碱性增强;Freundlich和Langmuir二种等温线模型均能较好的反应活性炭对苯酚的吸附行为,其中Freundlich模型更为理想。  相似文献   

10.
通过负载ZnCl_2对活性炭进行改性,考察了其对氨的平衡吸附量。利用扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)及N2物理吸附等手段对样品进行了表征。结果表明,改性后活性炭的比表面积及总孔容显著下降,但其表面亲水基团含量有所增加。ZnCl_2改性明显提高了活性炭对氨的吸附能力,当ZnCl_2浓度为21%时,活性炭对氨的吸附性能最佳,其平衡吸附量为131.2 mg/g,约为未改性活性炭的4.88倍。  相似文献   

11.
以石油焦为原料经高温炭化和水蒸气活化处理制备出石油焦基活性炭,经硝酸氧化处理后,采用静态吸附法测试了2-甲基噻吩在石油焦基活性炭上的吸附性能。研究结果显示,制备的活性炭比表面积高于800 m2·g-1,孔容大于0.45 cm3·g-1,经硝酸处理后比表面积和总孔容有所下降。样品经硝酸处理后,对2-甲基噻吩的饱和吸附量显著增加,硝酸处理40 min得到的活性炭对2-甲基噻吩的饱和吸附量最大。2-甲基噻吩在石油焦基活性炭上的吸附动力学均遵循拟二级动力学模型,饱和吸附量随吸附温度的增加而减小,热力学上表现为放热,熵减且是自发进行的过程。  相似文献   

12.
酚醛树脂基活性炭的制备及双电层电容特性   总被引:1,自引:0,他引:1  
以热固性酚醛树脂为原料,采用CO2物理活化法制备双电层电容器用高比表面积活性炭。由氮气吸附法测定活性炭的比表面积和孔结构,采用循环伏安、交流阻抗和恒电流充放电考察其在30%KOH水溶液中的电容特性。结果表明,随着活化温度的升高,所得活性炭收率下降,比表面积、总孔孔容和质量比电容不断增加;具有高比表面积和宽孔径分布的试样APF953,具有最高的质量比电容值,电流密度由50mA·g^-1提高到500mA·g^-1时,其放电比电容由183.36F·g^-1降低到175.68F·g^-1,容量保持率达到96%,显示出良好的电容特性。  相似文献   

13.
采用KOH改性椰壳活性炭(AC)作为吸附剂,调变KOH和AC的质量比(KOH/AC,以下简称碱碳比)和活化温度制备一系列改性吸附剂,通过动态吸附法评价其脱除微量乙烷的性能,并与AC进行对比研究。评价结果表明,最佳制备条件为:KOH和吸附剂的最佳碱碳比为0. 5,最佳活化温度为800℃。在该条件下制备的KOH改性AC吸附剂的乙烷穿透吸附量达到482. 1μg/g,高于AC的169. 6μg/g。表征结果显示,与AC相比,KOH改性AC表面的氧含量更高,并增加了吸附剂的微孔数量,微孔比率从75. 3%增加到了83. 9%,并有适量的介孔,该结构有利于对乙烷的吸附。  相似文献   

14.
本文采用常规加热法制备稻壳基活性炭,利用正交实验方法,探讨了分别以氢氧化钾、碳酸钾为活化剂时活性炭的最佳制备方案。通过扫描电子显微镜观察所得活性炭的表面形貌,利用热分析仪对稻壳原料进行了热力学分析,利用分光光度计测定活性炭的亚甲基蓝吸附值和碘吸附值。结果表明,采用氢氧化钾为活化剂得到的活性炭,孔洞多为小孔,其亚甲基蓝最大吸附值为63.81mg·g-1,碘吸附最大值为680.59mg·g-1;采用碳酸钾为活化剂得到的活性炭多为大孔和中孔,亚甲基蓝的最大吸附值为25.83mg·g-1,碘吸附最大值为495.25mg·g-1。  相似文献   

15.
文章主要研究了改性活性炭的吸附性能在降低废水COD方面的作用。通过改变水样中的改性活性炭投加量、反应的温度和反应试液的p H,确定了最适宜改性活性炭吸附的条件,吸附后的改性活性炭经过热再生,可以循环使用3次。同时与未改性活性炭相比,改性活性炭具在吸附性能具有较大的优势。  相似文献   

16.
高锰酸钾改性活性炭的表征及吸附Cr(Ⅵ)性能的研究   总被引:1,自引:0,他引:1  
用KMnO_4改性活性炭对重金属离子Cr(Ⅵ)进行吸附。采用扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、N2吸附/解吸等方法对改性活性炭的理化性质进行表征,探讨各种参数(如pH、接触时间、吸附剂用量、温度和初始浓度)对吸附Cr(Ⅵ)的影响。研究证明,当pH 2时,KMnO_4改性活性炭对重金属离子Cr(Ⅵ)的吸附效果最佳,AC1和AC3吸附率分别达到65%和90%以上,而未改性AC0的吸附率约40%。随着pH的增加,吸附效果变弱。接触时间为4 h时,KMnO_4改性活性炭对重金属离子Cr(Ⅵ)的吸附基本达到平衡,而温度对其影响不大。当改性炭的投加量为50 mg、Cr(Ⅵ)溶液浓度为10 mg/L时,吸附效果最佳,AC3的吸附率可达90%以上,比AC0增加50%以上。改性活性炭吸附Cr(Ⅵ)过程符合准二级动力学方程。  相似文献   

17.
龚春明 《辽宁化工》2014,(6):694-696,699
研究主要是制备一种牡蛎壳陶粒,并考察煅烧温度对牡蛎壳陶粒除磷性能的影响。结果表明煅烧温度对牡蛎壳载体磷吸附效果的影响较大,当牡蛎壳粉末∶粘土∶九水硅酸钠=7∶2∶1,煅烧温度为450℃时,制备的牡蛎壳陶粒对磷的吸附量为0.155 mg·g-1。牡蛎壳陶粒对磷的吸附符合Langmuir等温吸附模型,且在25℃下最大吸附量为0.432 mg·g-1。最佳条件下制备的牡蛎壳陶粒具有良好的亲水性,吸水率可以达到18.64%、载体的抗压强度可以达到2.15 MPa、空隙率为41.2%、比表面积为5.71 m2·g-1、破碎率与磨损率之和为2.95%、含泥量为0.61%,这些指标均满足《水处理用人工陶粒滤料CJ/T 299-2008》的指标,可以将此牡蛎壳陶粒用到水处理当中。  相似文献   

18.
用化学沉淀法在活性炭(AC)表面和微孔内掺杂不同量的氢氧化镍,制备了氢氧化镍-活性炭[Ni(OH)2-AC]复合材料. 用X射线衍射(XRD)和氮气吸附等温线等对活性炭和复合材料进行表征,结果表明,所制材料为b-Ni(OH)2-AC复合材料. 对不同掺杂量的b-Ni(OH)2-AC复合材料的电化学性能进行了研究,循环伏安、恒流充放电实验表明,少量氢氧化镍掺入活性炭表面和微孔中,所得材料的比电容较活性炭有所提高,并具有良好的充放电性能;当氢氧化镍的掺入量为6%(w)时,所制备的超级电容器单电极表现出优良的电化学性能. 以活性炭电极作负极,复合材料作正极制成复合型超级电容器,循环性能测试发现,掺入6%(w)氢氧化镍的复合材料制成的Ni(OH)2-AC/AC复合型超级电容器比电容高达330.7 F/g,比活性炭(AC/AC)超级电容器比电容(245.6 F/g)提高了34.6%,且Ni(OH)2-AC/AC复合型超级电容器具有更好的循环充放电性能.  相似文献   

19.
为有效处理印染废水,选用活性炭纤维ACF为吸附剂,以盐酸为改性试剂,以亚甲基蓝为目标污染物,通过正交实验设计确定了ACF的最佳改性条件,并与未改性ACF进行了吸附性能的比较。实验结果表明,当盐酸浓度为3 mol·L-1,真空浸渍时间为90 min,真空浸渍次数为4次,并于100℃烘干所制得的改性活性炭纤维ACF具有最高的吸附性能,快速吸附10 min,对亚甲基蓝的吸附效率已达到91.90%,远高于未经改性处理的ACF对亚甲基蓝的吸附效率43.44%;吸附30 min后达到吸附平衡,吸附率可达99.8%以上。  相似文献   

20.
微波加热烟杆氢氧化钾活化法制备活性炭的研究   总被引:1,自引:0,他引:1  
研究了微波加热烟杆氢氧化钾活化法制备微孔活性炭的新工艺.采用正交实验研究了相关因素对活性炭得率和吸附性能的影响,确定了最佳工艺条件.该工艺将传统方法的预热、干燥、炭化和活化简化为一个过程,所需要的活化时间是传统方法的1/13,产品的亚甲基蓝吸附值是国家一级标准的2.56倍.同时测定了该活性炭的氮吸附等温线,通过H-K方程和密度函数理论(DFT)表征了活性炭的孔结构.结果表明:该活性炭为微孔型,BET比表面积为1402 m2·g-1,总孔容为0.6855 mL·g-1.采用扫描电镜和透射电镜分析了活性炭的微观结构,与氮吸附测定的结果较为一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号