首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fatty liver is commonly detected in obesity and has been identified as a risk factor for the progression of hepatic fibrosis in a wide range of liver diseases. Transforming growth factor beta (TGFβ) and activin A, both members of the TGFβ superfamiliy, are central regulators in liver fibrosis and regeneration, and the effect of hepatocyte lipid accumulation on the release of these proteins was studied. Primary human hepatocytes (PHH) were incubated with palmitic acid or oleic acid to increase lipid storage. Whereas activin A and its natural inhibitor follistatin were not affected, TGFβ was 2-fold increased. The hepatoprotective adipokine adiponectin dose-dependently induced activin A while lowering follistatin but did not alter TGFβ. Activin A was markedly reduced in hepatocyte cell lines compared to PHH and was not induced upon adiponectin incubation demonstrating significant differences of primary and transformed cells. In free fatty acid (FFA)-incubated PHH adiponectin-mediated induction of activin A was impaired. Inhibition of TGFβ receptors ALK4/5 and blockage of SMAD3 phosphorylation rescued activin A synthesis in FFA and in TGFβ incubated cells suggesting that FFA inhibit adiponectin activity by inducing TGFβ. To evaluate whether serum levels of activin A and its antagonist are altered in patients with hepatic steatosis, both proteins were measured in the serum of patients with sonographically diagnosed fatty liver and age- and BMI-matched controls. Systemic adiponectin was significantly reduced in patients with fatty liver but activin A and follistatin were not altered. In summary the current data demonstrate that lipid accumulation in hepatocytes induces TGFβ which impairs adiponectin bioactivity, and thereby may contribute to liver injury.  相似文献   

2.
3.
The activin axis in liver biology and disease   总被引:4,自引:0,他引:4  
Activins are a closely related subgroup within the TGFbeta superfamily of growth and differentiation factors. They consist of two disulfide-linked beta subunits. Four mammalian activin beta subunits termed beta(A), beta(B), beta(C), and beta(E), respectively, have been identified. Activin A, the homodimer of two beta(A) subunits, has important regulatory functions in reproductive biology, embryonic development, inflammation, and tissue repair. Several intra- and extracellular antagonists, including the activin-binding proteins follistatin and follistatin-related protein, serve to fine-tune activin A activity. In the liver there is compelling evidence that activin A is involved in the regulation of cell number by inhibition of hepatocyte replication and induction of apoptosis. In addition, activin A stimulates extracellular matrix production in hepatic stellate cells and tubulogenesis of sinusoidal endothelial cells, and thus contributes to restoration of tissue architecture during liver regeneration. Accumulating evidence from animal models and from patient data suggests that deregulation of activin A signaling contributes to pathologic conditions such as hepatic inflammation and fibrosis, acute liver failure, and development of liver cancer. Increased production of activin A was suggested to be a contributing factor to impaired hepatocyte regeneration in acute liver failure and to overproduction of extracellular matrix in liver fibrosis. Recent evidence suggests that escape of (pre)neoplastic hepatocytes from growth control by activin A through overexpression of follistatin and reduced activin production contributes to hepatocarcinogenesis. The role of the activin subunits beta(C) and beta(E), which are both highly expressed in hepatocytes, is still quite incompletely understood. Down-regulation in liver tumors and a growth inhibitory function similar to that of beta(A) has been shown for beta(E). Contradictory results with regard to cell proliferation have been reported for beta(C). The profound involvement of the activin axis in liver biology and in the pathogenesis of severe hepatic diseases suggests activin as potential target for therapeutic interventions.  相似文献   

4.
Inflammation and hepatic stellate cell (HSC) activation are the most crucial steps in the formation of hepatic fibrosis. Hepatocytes damaged by viral or bacterial infection, alcohol or toxic chemicals initiate an inflammatory response that activates collagen production by HSCs. Recent studies indicate curcumin has liver-protective effects due to its anti-inflammatory, antioxidant and anticancer activities; however, the mechanisms are not well understood. In this study, we show that curcumin protected against hepatic fibrosis in BALB/c mice in vivo by inhibiting HSC activation, inflammatory responses and inducing apoptosis of damaged hepatocytes. Using the thioacetamide (TAA)-induced hepatic fibrosis animal model, we found that curcumin treatment up-regulated P53 protein expression and Bax messenger RNA (mRNA) expression and down-regulated Bcl-2 mRNA expression. Together, these responses increased hepatocyte sensitivity to TAA-induced cytotoxicity and forced the damaged cells to undergo apoptosis. Enhancing the tendency of damaged hepatocytes to undergo apoptosis may be the protective mechanism whereby curcumin suppresses inflammatory responses and hepatic fibrogenesis. These results provide a novel insight into the cause of hepatic fibrosis and the cytoprotective effects curcumin has on hepatic fibrosis suppression.  相似文献   

5.
Liver fibrosis is a common characteristic of chronic liver diseases. The activation of hepatic stellate cells (HSCs) plays a key role in fibrogenesis in response to liver injury, yet the mechanism by which damaged hepatocytes modulate the activation of HSCs is poorly understood. Our previous studies have established that liver-specific deletion of O-GlcNAc transferase (OGT)leads to hepatocyte necroptosis and spontaneous fibrosis. Here, we report that OGT-deficient hepatocytes secrete trefoil factor 2 (TFF2) that activates HSCs and contributes to the fibrogenic process. The expression and secretion of TFF2 are induced in OGT-deficient hepatocytes but not in WT hepatocytes. TFF2 activates the platelet-derived growth factor receptor beta signaling pathway that promotes the proliferation and migration of primary HSCs. TFF2 protein expression is elevated in mice with carbon tetrachloride-induced liver injury. These findings identify TFF2 as a novel factor that mediates intercellular signaling between hepatocytes and HSCs and suggest a role of the hepatic OGT–TFF2 axis in the process of fibrogenesis.  相似文献   

6.
The role of retinoic acid (RA) in liver fibrogenesis was previously studied in cultured hepatic stellate cells (HSCs). RA suppresses the expression of alpha2(I) collagen by means of the activities of specific nuclear receptors RARalpha, RXRbeta and their coregulators. In this study, the effects of RA in fibrogenesis were examined in carbon tetrachloride (CCl4) induced liver fibrosis in mice. Mice were treated with CCl4 or RA and CCl4, along side control groups, for 12weeks. RA reduced the amount of histologically detectable fibrosis produced by CCl4. This was accompanied by a attenuation of the CCl4 induced increase in alpha2(I) collagen mRNA and a lower (2-fold versus 3-fold) increase in liver hydroxyproline. Furthermore, RA reduced the levels of 3-nitrotyrosine (3-NT) protein adducts and thiobarbituric acid (TBA) reactive substance (TBARS) in the liver, which are formed as results of oxidative stress induced by CCl4 treatment. These in vivo findings support our previous in vitro studies in cultured HSC of the inhibitory effect of RA on type I collagen expression. The data also provide evidence that RA reduces CCl4 induced oxidative stress in liver, suggesting that the anti-fibrotic role of RA is not limited to the inhibition of type I collagen expression.  相似文献   

7.
Liver fibrosis is a reversible wound‐healing response that occurs after liver injury. NADPH oxidases (NOXs) and reactive oxygen species (ROS) which are expressed in hepatocytes (HCs), hepatic stellate cells (HSCs), and Kupffer cells (KCs) play an important role in the development of hepatic fibrosis. In in vitro studies, we had shown that ursolic acid (UA) could reverse liver fibrosis by inhibiting the activation of NOX‐mediated fibrotic signaling networks in HSCs. In this study, we verified that UA could alleviate CCl4‐induced liver fibrosis by reducing the expression of NOXs/ROS in HCs, HSCs, KCs. Meanwhile, the phagocytic index α and clearance index K which represent phagocytosis of KCs were unchanged. Together, all our data demonstrated that UA induced the proliferation of HCs, promoted apoptosis in HSCs, and prevented activation of KCs in vivo by reducing the expression of NOXs/ROS in HCs, HSCs, KCs. Besides, UA had no effect on the host defense function.  相似文献   

8.
A protective effect of Rho-kinase inhibitor on various organ injuries is gaining attention. Regarding liver injury, Rho-kinase inhibitor is reported to prevent carbon tetrachloride (CCl4)- or dimethylnitrosamine-induced liver fibrosis and hepatic ischemia-reperfusion injury in rats. Because Rho-kinase inhibitor not only improved liver fibrosis but also reduced serum alanine aminotransferase (ALT) level in CCl4-induced liver fibrosis, we wondered whether Rho-kinase inhibitor might exert a direct hepatocyte-protective effect. We examined this possibility in acute CCl4 intoxication in rats. Rho-kinase inhibitor, HA-1077, reduced serum alanine ALT level in rats with acute liver injury induced by CCl4 with the improvement of histological damage and the reduction of the number of apoptotic cells. In cultured rat hepatocytes in serum-free condition, HA-1077 reduced apoptosis evaluated by quantitative determination of cytoplasmic histone-associated DNA oligonucleosome fragments with the reduction of caspase-3 activity and the enhancement of Bcl-2 expression. HA-1077 stimulated phosphorylation of Akt, and wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, abrogated the reduction of hepatocyte apoptosis by HA-1077 in vitro. Furthermore, wortmannin abrogated the reduction of serum ALT level by HA-1077 in rats with acute liver injury induced by CCl4, suggesting that the activation of PI3-kinase/Akt pathway may be involved in the hepatocyte-protective effect by Rho-kinase inhibitor in vivo. In conclusion, Rho-kinase inhibitor prevented hepatocyte damage in acute liver injury induced by CCl4 in rats and merits consideration as a hepatocyte-protective agent in liver injury, considering its direct antiapoptotic effect on hepatocytes in vitro.  相似文献   

9.
10.
目的动态观察大鼠肝纤维化过程中Toll样受体4(Toll-like receptor4,TLR4)蛋白在肝脏的表达,探讨TLR4与肝纤维化发生发展的关系。方法以四氯化碳皮下注射复制大鼠肝纤维化模型,设立正常对照组和模型1周组、2周组、4周组、6周组。常规HE染色和天狼猩红胶原染色观察肝脏病变;检测肝组织羟脯氨酸和血浆内毒素含量;免疫组化和Western blot检测TLR4在肝组织中的表达,检测α-SMA观察活化的肝星状细胞(HSCs)。结果与正常对照组比较,CCl4作用2周时,肝组织羟脯氨酸含量开始明显增多(P〈0.01);模型组各组血浆内毒素含量呈梯度上升(P〈0.01),且与肝组织羟脯氨酸含量呈显著正相关关系(P〈0.01);CCl4作用1周后肝组织TLR4的表达即明显增强(P〈0.01),4周时和6周时有所下降(与2周组相比,P〈0.05),但仍高于正常对照组(P〈0.01)。TLR4阳性细胞包括枯否细胞、活化的HSCs及少量的肝细胞和内皮细胞。结论内毒素及其受体TLR4的改变可能在肝纤维化中起重要作用。  相似文献   

11.
Shugan-Huayu powder (SHP) has been administered to outpatients with chronic liver disease without clear anti-fibrosis mechanism. To investigate the anti-fibrotic effects of SHP on liver fibrosis in a rat model and in hepatic stellate cells (HSCs) in vitro, rats were gavaged with CCl4 at 1.0 g/kg body weight twice a week for 8 weeks to induce liver fibrosis and the rats were randomly assigned to one of the three groups: -CCl4 alone, low-dose SHP and high-dose SHP. SHP was given by gavages 5 times a week for 8 weeks. Serum, livers and HSCs were assayed for serology, pathology, western blot, zymography and quantitative RT-PCR. Hepatic function improved as decreased serum aspartate aminotransferase and alanine aminotransferase, and collagen deposition and active HSCs were significantly reduced in CCl4-induced liver by SHP treatment. The expression of matrix metalloproteinase-2 (MMP-2) and transforming growth factor-beta1 (TGF-beta1) mRNA in fibrotic liver showed significant downregulation after SHP treatment. In vitro, inhibition of alpha-smooth muscle actin (alpha-SMA) expression and MMP-2 secretion of active HSCs were also noticed by SHP treatment. SHP has an antifibrotic effect on CCl4-induced liver fibrosis in rats. Anti-fibrotic mechanisms were probably inhibiting activation of HSCs and decreased expression of MMP-2 and TGF-beta1.  相似文献   

12.
Transforming growth factor (TGF) β(1) plays a critical role in liver fibrosis. Previous studies demonstrated embryonic liver fodrin (ELF), a β-spectrin was involved in TGF-β/Smad signalling pathway as Smad3/4 adaptor. Here we investigate the role of ELF in pathogenesis of liver cirrhosis. In carbon tetrachloride (CCl(4))-induced mice model of liver cirrhosis, ELF is up-regulated in activated hepatic stellate cells (HSCs), and down-regulated in regenerative hepatocytes of cirrhotic nodules. In activated HSCs in vitro, reduction of ELF expression mediated by siRNA leads to the inhibition of HSC activation and procollagen I expression. BrdU assay demonstrates that down-regulation of ELF expression does not inhibit proliferation of activated HSCs in vitro. Immunostaining of cytokeratin 19 and Ki67 indicates that regenerative hepatocytes in cirrhotic liver are derived from hepatic progenitor cells (HPC). Further study reveals that HPC expansion occurs as an initial phase, before the reduction of ELF expression in regenerative hepatocytes. Regenerative hepatocytes in cirrhotic liver show the change in proliferative activity and expression pattern of proteins involved in G1/S transition, which suggests the deregulation of cell cycle in regenerative hepatocytes. Finally, we find that ELF participates in TGF-β/Smad signal in activated HSCs and hepatocytes through regulating the localization of Smad3/4. These data reveal that ELF is involved in HSC activation and the formation of regenerative nodules derived from HPC in cirrhotic liver.  相似文献   

13.
Hepatic stellate cells (HSCs) are important part of the local 'stem cell niche' for hepatic progenitor cells (HPCs) and hepatocytes. However, it is unclear as to whether the products of activated HSCs are required to attenuate hepatocyte injury, enhance liver regeneration, or both. In this study, we performed 'loss of function' studies by depleting activated HSCs with gliotoxin. It was demonstrated that a significantly severe liver damage and declined survival rate were correlated with depletion of activated HSCs. Furthermore, diminishing HSC activation resulted in a 3-fold increase in hepatocyte apoptosis and a 66% decrease in the number of proliferating hepatocytes. This was accompanied by a dramatic decrease in the expression levels of five genes known to be up-regulated during hepatocyte replication. In particular, it was found that depletion of activated HSCs inhibited oval cell reaction that was confirmed by decreased numbers of Pank-positive cells around the portal tracts and lowered gene expression level of cytokeratin 19 (CK19) in gliotoxin-treated liver. These data provide clear evidence that the activated HSCs are involved in both hepatocyte death and proliferation of hepatocytes and HPCs in acetaminophen (APAP)-induced acute liver injury.  相似文献   

14.
15.
16.
Liver fibrosis is a chronic inflammatory process characterized by the accumulation of extracellular matrix (ECM), which contributes to cirrhosis and hepatocellular carcinoma. Increasing evidence suggests that the activation of hepatic stellate cells (HSCs) under an inflammatory state leads to the secretion of collagens, which can cause cirrhosis. In this study, we analysed data from the Gene Expression Omnibus (GEO) databases to identify differentially expressed genes (DEGs) between quiescent and fibrotic HSCs. We found that Microfibril Associated Protein 2 (MFAP2) was elevated in carbon tetrachloride (CCl4)-induced liver fibrosis and Transforming Growth Factor-Beta 1 (TGF-β1)-activated HSCs. Knockdown of MFAP2 inhibited HSC proliferation and partially attenuated TGF-β-stimulated fibrogenesis markers. Bioinformatics analysis revealed that Fibrillin-1 (FBN1) was correlated with MFAP2, and the expression of FBN1 was significantly upregulated after MFAP2 overexpression. Silencing MFAP2 partially attenuated the activation of HSCs by inhibiting HSC proliferation and decreasing collagen deposits. In vitro results showed that the inhibition of MFAP2 alleviated hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in a CCl4-induced mouse model. In conclusion, our results suggest that MFAP2 is a potential target for the clinical treatment of liver fibrosis.  相似文献   

17.
The activation of the hepatic stellate cell (HSC) is a key step in liver fibrogenesis. Utilizing large scale sequencing of a 3'-directed cDNA library, we investigated expression profiles of quiescent and activated rat HSCs. During the activation process, O-acetyl disialoganglioside synthase (OAcGD3S) was identified as one of the significant upregulated factors. Upregulation of OAcGD3S in cultured HSCs was confirmed by both Northern and Western blot analyses. OAcGD3S expression in models of experimental liver fibrosis was investigated at the mRNA level using RT-PCR. The expression of OAcGD3S protein in activated rat HSCs and in experimental fibrotic livers was demonstrated by immunohistochemistry. In situ hybridization revealed OAcGD3S mRNA expression in areas of ductular proliferation. Furthermore, O-acetyl GD3 protein was detected in activated rat HSCs and human cirrhosis livers. This study shows that OAcGD3S is strongly expressed during liver fibrogenesis and HSCs seem to be the major cellular sources of OAcGD3S in the liver.  相似文献   

18.
Fas/Fas ligand (FasL)-mediated cell apoptosis involves a variety of physiological and pathological processes including chronic hepatic diseases, and hepatocytes apoptosis contributes to the development of liver fibrosis following various causes. However, the mechanism of the Fas/FasL signaling and hepatocytes apoptosis in liver fibrogenesis remains unclear. The Fas/FasL signaling and hepatocytes apoptosis in liver samples from both human sections and mouse models were investigated. NF-κBp65 wild-type mice (p65f/f), hepatocytes specific NF-κBp65 deletion mice (p65Δhepa), p53-upregulated modulator of apoptosis (PUMA) wild-type (PUMA-WT) and PUMA knockout (PUMA-KO) littermate models, and primary hepatic stellate cells (HSCs) were also used. The mechanism underlying Fas/FasL-regulated hepatocytes apoptosis to drive HSCs activation in fibrosis was further analyzed. We found Fas/FasL promoted PUMA-mediated hepatocytes apoptosis via regulating autophagy signaling and NF-κBp65 phosphorylation, while inhibition of autophagy or PUMA deficiency attenuated Fas/FasL-modulated hepatocytes apoptosis and liver fibrosis. Furthermore, NF-κBp65 in hepatocytes repressed PUMA-mediated hepatocytes apoptosis via regulating the Bcl-2 family, while NF-κBp65 deficiency in hepatocytes promoted PUMA-mediated hepatocytes apoptosis and enhanced apoptosis-linked inflammatory response, which contributed to the activation of HSCs and liver fibrogenesis. These results suggest that Fas/FasL contributes to NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to enhance liver fibrogenesis, and this network could be a potential therapeutic target for liver fibrosis.Subject terms: Apoptosis, Extracellular signalling molecules  相似文献   

19.
Here we investigated the effect of pioglitazone, a peroxisome proliferator-activated receptor (PPAR)-gamma ligand, on early-phase hepatic fibrogenesis in vivo caused by acute carbon tetrachloride (CCl(4)) administration in the rat. Pioglitazone (1 mg/kg BW) prevented pericentral fibrosis and induction of alpha-smooth muscle actin (SMA) 72 h after CCl(4) administration (1 ml/kg BW). CCl(4) induction of alpha1(I)procollagen mRNA in the liver was blunted by pioglitazone to the levels almost 2/3 of CCl(4) alone. Pioglitazone also prevented CCl(4)-induced hepatic inflammation and necrosis, as well as increases in serum tumor necrosis factor-alpha levels. Further, pioglitazone inhibited the induction of alphaSMA and type I collagen in primary cultured hepatic stellate cells in a dose-dependent manner. In conclusion, pioglitazone inhibits both hepatic inflammation and activation of hepatic stellate cells, thereby ameliorating early-phase fibrogenesis in the liver following acute CCl(4).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号