首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A preliminary design study of an advanced 50 m blade for utility wind turbines is presented and discussed. The effort was part of the Department of Energy WindPACT Blade System Design Study with the goal to investigate and evaluate design and manufacturing issues for wind turbine blades in the 1–10 MW size range. Two different blade designs are considered and compared in this article. The first is a fibreglass design, while the second design selectively incorporates carbon fibre in the main structural elements. The addition of carbon results in modest cost increases and provides significant benefits, particularly with respect to blade deflection. The structural efficiency of both designs was maximized by tailoring the thickness of the blade cross‐sections to simplify the construction of the internal members. Inboard the blades incorporate thick blunt trailing edge aerofoils (flatback aerofoils), while outboard more conventional sharp trailing edge high‐lift aerofoils are used. The outboard section chord lengths were adjusted to yield the least complex and costly internal blade structure. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of studs has a positive effect on total weight, because it reduces the required root laminate thickness. The aerodynamic performance of the blade aerofoils was predicted using computational techniques that properly simulate blunt trailing edge flows. The performance of the rotor was predicted assuming both clean and soiled blade surface conditions. The rotor is shown to provide excellent performance at a weight significantly lower than that of current rotors of this size. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
This work introduces automated wind turbine optimization techniques based on full aero-servo-elastic models and investigates the potential of trailing edge flaps to reduce the levelized cost of energy (LCOE) of wind turbines. The Wind Energy with Integrated Servo-control (WEIS) framework is improved to conduct the presented research. Novel methods for the generic implementation and tuning of trailing edge flap devices and their controller are also introduced. Primary flap and controller parameters are optimized to demonstrate potential maximum blade tip deflection reductions of 21%. Concurrent design optimization (i.e., co-design) of a novel segmented wind turbine blade with trailing edge flaps and its controller is then conducted to demonstrate blade cost savings of 5%. Additionally, rotor diameter co-design optimization is demonstrated to reduce the LCOE by 1.3% without significant load increases to the tower. These results demonstrate the efficacy of control co-design optimization using trailing edge flaps, and the entirety of this work provides a foundation for numerous control co-design-oriented studies for distributed aerodynamic control devices.  相似文献   

3.
D. D. Chao  C. P. van Dam 《风能》2007,10(6):529-550
The effects of modifying the inboard portion of the experimental NREL Phase VI rotor using a thickened, blunt trailing‐edge (or flatback) version of the S809 design airfoil are studied using a compressible, three‐dimensional, Reynolds‐averaged Navier–Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The numerical results for the baseline Phase VI rotor are benchmarked against wind tunnel measurements obtained at freestream velocities of 5, 7 and 10ms?1. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, blunt trailing‐edge blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
M. A. Eder  R. D. Bitsche 《风能》2015,18(6):1007-1022
Modern wind turbine rotor blades are usually made from fibre‐reinforced composite subcomponents. In the final assembly stage, these subcomponents are bonded together by several adhesive joints. One important adhesive joint is situated at the trailing edge, which refers to the downstream edge where the air‐flow rejoins and leaves the blade. Maintenance inspections of wind turbine rotor blades show that among other forms of damage, local debonding of the shells along the trailing edge is a frequent failure type. The cause of trailing edge failure in wind turbine blades is complex, and detailed information is scarce. This paper is concerned with the fracture analysis of adhesive joints in general, with a particular focus on trailing edges. For that, the energy release rates in prescribed cracks present in the bond line of a generic trailing edge joint are investigated. In connection with this examination, the paper elucidates the influence of geometrical non‐linearity in form of local buckling on both the increase of the energy release rate and the change of mode mixity. First, experimental results on adhesively bonded small‐scale subcomponents are presented. Thereafter, a practical approach is presented, which links the experimental results conducted on a small scale to the numerical failure prediction of large‐scale models. The proposed method is based on the virtual crack closure technique and defines the mode mixity at bimaterial interfaces unambiguously. The method is consequently applied to a wind turbine blade submodel in order to predict crack growth in the trailing edge. Thereby, the influence of different crack lengths on crack initiation and propagation is considered. The paper concludes with general thoughts on adhesively bonded trailing edge joints regarding the prevention of local debonding. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
为了研究H型垂直轴风力机后缘加装小翼的输出特性变化规律,文章以NACA0012翼型叶片为例,采用风洞试验与数值模拟的方法,对加装后缘小翼的风力机进行了研究。模拟结果表明,加装后缘小翼的风力机的单叶片扭矩系数及功率性能要优于未加装小翼的风力机,整体功率较未加装小翼的风力机略有提升。风洞实验结果表明:加装后缘小翼可以提高风力机的最大输出功率,其中径长比对于加装小翼的垂直轴风力机功率提升的影响较大;当转速小于300 r/min时,安装径长比为0.6的后缘小翼的风力机输出功率最高;当转速超过300 r/min时,径长比为0.4的后缘小翼的风力机输出功率最高。  相似文献   

6.
Wind turbine rotor blades are sophisticated, multipart, lightweight structures whose aeroelasticity‐driven geometrical complexity and high strength‐to‐mass utilization lend themselves to the application of glass‐fibre or carbon‐fibre composite materials. Most manufacturing techniques involve separate production of the multi‐material subcomponents of which a blade is comprised and which are commonly joined through adhesives. Adhesive joints are known to represent a weak link in the structural integrity of blades, where particularly, the trailing‐edge joint is notorious for its susceptibility to damage. Empiricism tells that adhesive joints in blades often do not fulfil their expected lifetime, leading to considerable expenses because of repair or blade replacement. Owing to the complicated structural behaviour—in conjunction with the complex loading situation—literature about the root causes for adhesive joint failure in blades is scarce. This paper presents a comprehensive numerical investigation of energy release rates at the tip of a transversely oriented crack in the trailing edge of a 34m long blade for a 1.5MW wind turbine. First, results of a non‐linear finite element analysis of a 3D blade model, compared with experimental data of a blade test conducted at Danmarks Tekniske Universitet (DTU) Wind Energy (Department of Wind Energy, Technical University of Denmark), showed to be in good agreement. Subsequently, the effects of geometrical non‐linear cross‐section deformation and trailing‐edge wave formation on the energy release rates were investigated based on realistic aeroelastic load simulations. The paper concludes with a discussion about critical loading directions that trigger two different non‐linear deformation mechanisms and their potential impact on adhesive trailing‐edge joint failure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Wind turbine rotor blades are commonly manufactured from composite materials by a moulding process. Typically, the wind turbine blade is produced in two halves, which are eventually adhesively joined along their edges. Investigations of operating wind turbine blades show that debonding of the trailing edge joint is a common failure type, and information on specific reasons is scarce. This paper is concerned with the estimation of the strain energy release rates (SERRs) in trailing edges of wind turbine blades in order to gain insight into the driving failure mechanisms. A method based on the virtual crack closure technique (VCCT) is proposed, which can be used to identify critical areas in the adhesive joint of a trailing edge. The paper gives an overview of methods applicable for fracture cases comprising non‐parallel crack faces in the realm of linear fracture mechanics. Furthermore, the VCCT is discussed in detail and validated against numerical analyses in 2D and 3D. Finally, the SERR of a typical blade section subjected to various loading conditions is investigated and assessed in order to identify potential design drivers for trailing edge details. Analysis of the blade section model suggests that mode III action is governing and accordingly that flapwise shear and torsion are the most important load cases.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Mitigating loads on a wind turbine rotor can reduce the cost of energy. Sweeping blades produces a structural coupling between flapwise bending and torsion, which can be used for load alleviation purposes. A multidisciplinary design optimization (MDO) problem is formulated including the blade sweep as a design variable. A multifidelity approach is used to confront the crucial effects of structural coupling on the estimation of the loads. During the MDO, ultimate and damage equivalent loads are estimated using steady‐state and frequency‐domain–based models, respectively. The final designs are verified against time‐domain full design load basis aeroelastic simulations to ensure that they comply with the constraints. A 10‐MW wind turbine blade is optimized by minimizing a cost function that includes mass and blade root flapwise fatigue loading. The design space is subjected to constraints that represent all the necessary requirements for standard design of wind turbines. Simultaneous aerodynamic and structural optimization is performed with and without sweep as a design variable. When sweep is included in the MDO process, further minimization of the cost function can be obtained. To show this achievement, a set of optimized straight blade designs is compared to a set of optimized swept blade designs. Relative to the respective optimized straight designs, the blade mass of the swept blades is reduced of an extra 2% to 3% and the blade root flapwise fatigue damage equivalent load by a further 8%.  相似文献   

9.
One serious challenge of energy systems design, wind turbines in particular, is the need to match the system operation to the variable load. This is so because system efficiency drops at off‐design load. One strategy to address this challenge for wind turbine blades and obtain a more consistent efficiency over a wide load range, is varying the blade geometry. Predictable morphing of wind turbine blade in reaction to wind load conditions has been introduced recently. The concept, derived from fish locomotion, also has similarities to spoilers and ailerons, known to reduce flow separation and improve performance using passive changes in blade geometry. In this work, we employ a fully coupled technique on CFD and FEM models to introduce continuous morphing to desired and predetermined blade design geometry, the NACA 4412 profile, which is commonly used in wind turbine applications. Then, we assess the aerodynamic behavior of a morphing wind turbine airfoil using a two‐dimensional computation. The work is focused on assessing aerodynamic forces based on trailing edge deflection, wind speed, and material elasticity, that is, Young's modulus. The computational results suggest that the morphing blade has superior part‐load efficiency over the rigid NACA blade. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a wind plant modeling and optimization tool that enables the maximization of wind plant annual energy production (AEP) using yaw‐based wake steering control and layout changes. The tool is an extension of a wake engineering model describing the steady‐state effects of yaw on wake velocity profiles and power productions of wind turbines in a wind plant. To make predictions of a wind plant's AEP, necessary extensions of the original wake model include coupling it with a detailed rotor model and a control policy for turbine blade pitch and rotor speed. This enables the prediction of power production with wake effects throughout a range of wind speeds. We use the tool to perform an example optimization study on a wind plant based on the Princess Amalia Wind Park. In this case study, combined optimization of layout and wake steering control increases AEP by 5%. The power gains from wake steering control are highest for region 1.5 inflow wind speeds, and they continue to be present to some extent for the above‐rated inflow wind speeds. The results show that layout optimization and wake steering are complementary because significant AEP improvements can be achieved with wake steering in a wind plant layout that is already optimized to reduce wake losses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
为降低水平轴风力机叶片的气动噪声,受鸮类静音飞行能力的启发,提取鸮类翅膀羽毛的非对称锯齿结构,并重构于风力机叶片尾缘处。采用大涡模拟(LES)和FW-H方程对改型叶片和原型叶片的流场及声场特性分别进行研究。同时通过改变非对称锯齿尾缘的结构参数,以探究不同锯齿夹角、锯齿宽度和锯齿间距对非对称锯齿尾缘的降噪效果的影响。结果显示:非对称锯齿尾缘具有较好的降噪效果,尤其是在低频和中频区域,总声压级最多可降低10 dB。当锯齿夹角分别为30°、40°和50°时,随着锯齿夹角的增加,噪声声压级在多数方位角下呈增加的趋势;锯齿宽度分别为10、12.5和15 mm时,随着锯齿宽度的增加,噪声声压级在多数方位角下明显降低;锯齿间距的改变,对0°方位角下的噪声声压级影响显著。而从涡分布图中可发现,非对称锯齿尾缘未改变叶片表面涡脱落的位置,但会减小涡结构和涡强度,增大涡间距,从而抑制噪声的产生。  相似文献   

12.
A full‐scale test was performed on a Vestas V27 wind turbine equipped with one active 70 cm long trailing edge flap on one of its 13 m long blades. Active load reduction could be observed in spite of the limited spanwise coverage of the single active trailing edge flap. A frequency‐weighted model predictive control was tested successfully on this demonstrator turbine. An average flapwise blade root load reduction of 14% was achieved during a 38 minute test, and a reduction of 20% of the amplitude of the 1P loads was measured. A system identification test was also performed, and an identified linear model, from trailing edge flap angle to flapwise blade root moment, was derived and compared with the linear analytical model used in the model predictive control design model. Flex5 simulations run with the same model predictive control showed a good correlation between the simulations and the measurements in terms of flapwise blade root moment spectral densities, in spite of significant differences between the identified linear model and the model predictive control design model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
综合应用涡面元和RANS方法,研究DU93-W-210、DU91-W2-250及DU97-W-300这3种常用翼型经尾缘修型后尾缘厚度对粗糙敏感性的影响.在涡面元方法中采用设置固定转捩和在RANS方法中采用设置锯齿形边界条件的方式来模拟翼型前缘污染,研究发现前缘污染造成翼型吸力峰降低,引起翼型气动性能下降,然而随着尾缘...  相似文献   

14.
Early‐stage wind turbine blade design usually relies heavily on low‐fidelity structural models; high‐fidelity, finite‐element‐based structural analyses are reserved for later design stages because of their complex workflows and high computational expense. Yet, high‐fidelity structural analyses often provide design‐governing feedback such as buckling load factors. Mitigation of the issues of workflow complexity and computational expense would allow designers to utilize high‐fidelity feedback earlier, more easily, and more often in the design process. Thus, a blade analysis framework that employs isogeometric analysis (IGA), a simulation method that overcomes many of the aforementioned drawbacks associated with traditional finite element analysis (FEA), is presented. IGA directly utilizes the mathematical models generated by computer‐aided design (CAD) software, requiring less user interaction and no conversion of parametric geometries to finite element meshes. Furthermore, IGA tends to have superior per‐degree‐of‐freedom accuracy compared with traditional FEA. Issues unique to IGA in the context of wind turbine blade design, such as coupling of thin‐shell components, are addressed, and a design approach that combines reduced‐order aeroelastic analysis with IGA is outlined. Aeroelastic analysis is used to efficiently provide dynamic kinematic data for a wide range of wind load cases, while IGA is used to perform buckling analysis. The value of incorporating high‐fidelity analysis feedback into blade design is demonstrated through optimization of the NREL/SNL 5 MW wind turbine blade. A variety of potential designs are produced with reduced blade mass and material cost, and IGA‐based buckling analysis is shown to provide design‐governing constraint information.  相似文献   

15.
Wind turbine upscaling is motivated by the fact that larger machines can achieve lower levelized cost of energy. However, there are several fundamental issues with the design of such turbines, and there is little public data available for large wind turbine studies. To address this need, we develop a 20 MW common research wind turbine design that is available to the public. Multidisciplinary design optimization is used to define the aeroservoelastic design of the rotor and tower subject to the following constraints: blade‐tower clearance, structural stresses, modal frequencies, tip‐speed and fatigue damage at several sections of the tower and blade. For the blade, the design variables include blade length, twist and chord distribution, structural thicknesses distribution and rotor speed at the rated. The tower design variables are the height, and the diameter distribution in the vertical direction. For the other components, mass models are employed to capture their dynamic interactions. The associated cost of these components is obtained by using cost models. The design objective is to minimize the levelized cost of energy. The results of this research show the feasibility of a 20 MW wind turbine and provide a model with the corresponding data for wind energy researchers to use in the investigation of different aspects of wind turbine design and upscaling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
通过实验测试,以动态旋转平台模拟风力机风向变化及偏航对风,研究不同偏航速度及偏航延时时间对风力机叶片应力及功率的影响。结果表明:动态偏航对风过程中,应力值基本呈由前缘向后缘、叶根向叶尖递减的趋势,在叶展方向0.67R及0.75R处,叶根弦向方向0.25c及0.50c处出现应力集中现象,偏航延时时间的加入可有效抑制叶片应力波动,过慢的偏航速度会导致功率曲线出现较大波动。引入一无量纲系数,该系数为风力机功率及叶片应力的比值,通过分析得知在仅考虑风力机叶片应力及功率时,风力机最佳偏航速度为0.5°/s。  相似文献   

17.
Unsteady numerical simulations of a high-load transonic turbine stage have been carried out to study the influences of vane trailing edge outer-extending shockwave on rotor blade leading edge film cooling performance. The turbine stage used in this paper is composed of a vane section and a rotor one which are both near the root section of a transonic high-load turbine stage. The Mach number is 0.94 at vane outlet, and the relative Mach number is above 1.10 at rotor outlet. Various positions and oblique angles of film cooling holes were investigated in this research. Results show that the cooling efficiency on the blade surface of rotor near leading edge is significantly affected by vane trailing edge outer-extending shockwave in some cases. In the cases that film holes are close to leading edge, cooling performance suffers more from the sweeping vane trailing edge outer-extending shockwave. In addition, coolant flow ejected from oblique film holes is harder to separate from the blade surface of rotor, and can cover more blade area even under the effects of sweeping vane trailing edge shockwave. As a result, oblique film holes can provide better film cooling performance than vertical film holes do near the leading edge on turbine blade which is swept by shockwaves.  相似文献   

18.
Despite the fact that wave energy is available at no cost, it is always desired to harvest the maximum possible amount of this energy. The axial flow air turbines are commonly used with oscillating water column devices as a power take‐off system. The present work introduces a blade profile optimization technique that improves the air turbine performance while considering the complex 3D flow phenomena. This technique produces non‐standard blade profiles from the coordinates of the standard ones. It implements a multi‐objective optimization algorithm in order to define the optimum blade profile. The proposed optimization technique was successfully applied to a biplane Wells turbine in the present work. It produced an optimum blade profile that improves the turbine torque by up to 9.3%, reduces the turbine damping coefficient by 10%, and increases the turbine operating range by 5%. The optimized profile increases the annual average turbine power by up to 3.6% under typical sea conditions. Moreover, new blade profiles were produced from the wind turbine airfoil data and investigated for use with the biplane Wells turbine. The present work showed that two of these profiles could be used with low wave energy seas. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
基于模态叠加理论对风电叶片后缘疲劳加载设备摇臂支架进行模态分析和拓扑结构优化。文章通过对风电叶片后缘疲劳加载模型进行合理简化,对摇臂支架所受载荷进行了等效分析,建立了摇臂支架的有限元模型,进而基于模态叠加法对摇臂支架进行动力学响应分析,得到了各阶次的频率分布情况。最后,以各板件厚度为约束条件,建立以质量最轻为目标函数的数学模型,结合OptiStruct软件得到了优化结果。结果表明,优化后的摇臂支架质量减少了985 kg,且在相同工况下,摇臂支架的变形量减少了4.7 mm,验证了优化后摇臂支架结构的可行性,为后缘加载装备的工程应用提供了理论支撑。  相似文献   

20.
Presented is a robust optimization strategy for the aerodynamic design of horizontal axis wind turbine rotors including the variability of the annual energy production because of the uncertainty of the blade geometry caused by manufacturing and assembly errors. The energy production of a rotor designed with the proposed robust optimization approach features lower sensitivity to stochastic geometry errors with respect to that of a rotor designed with the conventional deterministic optimization approach that ignores these errors. The geometry uncertainty is represented by normal distributions of the blade pitch angle, and the twist angle and chord of the airfoils. The aerodynamic module is a blade‐element momentum theory code. Both Monte Carlo sampling and the univariate reduced quadrature technique, a novel deterministic uncertainty analysis method, are used for uncertainty propagation. The performance of the two approaches is assessed in terms of accuracy and computational speed. A two‐stage multi‐objective evolution‐based optimization strategy is used. Results highlight that, for the considered turbine type, the sensitivity of the annual energy production to rotor geometry errors can be reduced by reducing the rotational speed and increasing the blade loading. The primary objective of the paper is to highlight how to incorporate an efficient and accurate uncertainty propagation strategy in wind turbine design. The formulation of the considered design problem does not include all the engineering constraints adopted in real turbine design, but the proposed probabilistic design strategy is fairly independent of the problem definition and can be easily extended to turbine design systems of any complexity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号