首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
深水钻井动力定位平台在推进器由于失电或自然环境恶劣且超过其能力的情况下,会失去对位置的控制而产生漂移,对正常钻井作业产生重大的影响。基于深水钻井平台隔水管系统挠性接头和伸缩节冲程、隔水管连接器解锁角度、平台应急解脱程序和作业经验,建立了深水钻井动力定位平台应急解脱允许漂移范围的系统计算流程,针对目标平台(1 500 m作业水深的DP3钻井平台)使用ABAQUS软件对LMRP及下BOP组进行建模,并进行了不同工况下的动态分析,结果表明:目标平台在过提711 kN情况下LMRP倾斜6°可完成解锁;在应急解脱前,可用的解脱时间随着蒲福氏等级的增大与水深的减小而降低,海流流速与蒲福等级对平台漂移产生的影响规律相似,海流流速对平台漂移产生的影响较小。  相似文献   

2.
《石油机械》2017,(9):57-62
常规钻井平台位置警戒圈根据隔水管的静态分析方法确定,无法考虑风、浪、流等载荷作用下平台的运动轨迹,也不能确定平台达到极限位置的时间,存在一定的局限性。为此,建立了基于钻井平台-隔水管-水下井口系统的动态耦合方法,采用FLEXCOM软件建立了钻井平台漂移分析的有限元模型,得出平台动态漂移轨迹与漂移情况下隔水管-井口系统的载荷状态,并结合平台应急解脱作业的响应时间,提出了钻井船允许的漂移时间和漂移距离的计算方法。分析结果表明:漂移分析模型综合考虑了风、浪、流等载荷的影响,能够动态预测平台动力定位失效情况下钻井船的漂移轨迹;在隔水管-井口系统的选型设计时,要针对具体井开展漂移分析计算,根据计算结果评估漂移时间和距离是否满足平台响应的时间要求,根据分析确定限制因素,针对性地采取强化措施。所得结论对于保证深水钻井隔水管系统和水下井口系统的完整性具有重要意义。  相似文献   

3.
当今世界上先进的深水钻完井装置具有锚泊及动力定位2种方式作业能力,业内推荐做法为水深小于1 500 m都可以使用锚泊方式定位,对于动力定位方式在浅水区的适应性和风险则缺少分析。通过对动力定位方式的原理及其漂移限制进行论述,包括了浅水定位的理论限制以及规避风险的措施,提出如何设定观察圈范围及浅水作业使用动力定位方式时应考虑因素、作业风险及应对措施,除了环境及深水钻井装置应急解脱时间影响因素外,还将考虑隔水管系统极限、水下井口和结构套管强度、通讯系统、定位传感器系统等影响因素,应对措施包括井口设备选择、隔水管系统分析、人员交流培训和使用者和承包商协议等,对浅水区使用定位方式作业有一定的指导意义。  相似文献   

4.
对于动力定位的深水作业平台,在海上始终处于动态稳定过程,而一旦定位失效,隔水管则需解脱,以便平台能够自由漂移。隔水管的解脱要求其内部的作业管柱也能解脱,由此对深水测试管柱提出了要求,相对于常规测试或浅水测试,深水测试管柱最大的不同点是使用了快速响应的深水水下树。正是由于深水水下树的使用,以及深水的自身特点,深水测试管柱在功能要求、安全要求、可靠性要求等方面都有所提升,独具特色。  相似文献   

5.
根据不同工况对锚泊系统的不同要求,确定锚泊系统性能优化的设计变量、优化目标和约束条件等。以南海某深水半潜式钻井平台为例,采用ANSYS-AQWA软件建立平台-锚泊系统动力耦合分析模型,根据现场环境载荷划分工况,并采用AQWA-DRIFT模块进行时域分析,得到各个方向上平台的最大漂移量、平均漂移量及系泊线最小安全系数等结果。基于作业工况安全作业窗口最大的优化要求,以及现场对平台漂移量和系泊线安全性能要求的优先级顺序,确定作业工况下的最优预张力范围;选取某极限工况,基于极限工况系泊线安全系数最大的优化要求,确定极限工况最优预张力范围。  相似文献   

6.
南海台风活动频繁,严重影响着锚泊定位半潜式钻井平台的作业安全。采用水动力学计算软件 ANSYS-AQWA,基于三维势流理论和莫里森方程,建立了平台-锚泊系统耦合动力分析模型,开展了台风作用下的平台漂移分析和锚泊系统安全性评估。分析结果表明:当锚泊系统完整时,平台的平均漂移量与最大漂移量均超出API规定的许用值,需停止钻井作业并准备解脱,但锚链不会发生断裂。如果锚泊系统中安全系数最小的锚链发生断裂,平台的漂移量明显增大,锚泊系统最小安全系数明显减小,局部情况下锚链易相继断裂并造成连锁反应。研究表明,提出的相关方法和得出的结论可为极端天气下锚泊定位浮式装置的安全评估提供参考。   相似文献   

7.
沈雁松  赵立中 《钻采工艺》2013,36(1):118-120
动力定位钻井平台虽已逐步广泛应用于深水和超深水油气资源的勘探开发,但由于其面临着非常复杂的环境工况和各种复杂因素的挑战,DP定位系统可能出现失控漂移的应急状况。一旦发生DP定位失控漂移,对平台的安全生产作业将造成严重的威胁,倘若处理不当或处理不及时,将可能导致巨大的财产损失甚至还会出现海洋环境污染事故。针对DP定位出现失控漂移的工况采取有效的安全应急解脱方法来减少和避免直接损失,这是目前采用的主要控制手段。为此,主要从DP定位钻井平台各种失控漂移工况并结合现场安全应急实践经验来研究DP定位钻井平台发生失控漂移时的应急处置对策,对现场管理者和操作者进行正确而有效的应急处置将可以最大限度的减少各种损失甚至可以避免巨大的直接损失。  相似文献   

8.
对超深水半潜式钻井平台动力定位能力进行分析,引入粒子群优化算法进行推进器推力分配计算,编写动力定位分析程序。以超深水半潜式钻井平台为例,采用挪威-德国船级社ERN计算海况条件并进行动力定位能力分析。计算结果表明,该超深水半潜式钻井平台动力定位能力满足ERN(99,99,99,99)要求,由于推进器布置及系统分割合理,在各单一推进器失效或单组推进器失效情况下,平台的动力定位能力没有明显短板。  相似文献   

9.
深水钻井隔水管系统是海洋油气勘探开发的关键设备,其正确设计与使用直接关系到钻完井作业的安全与高效。总结了近年来深水钻井隔水管的几项关键技术研究进展,主要包括深水海底井口-隔水管-平台耦合动力学分析方法,深水钻井隔水管避台撤离分析技术、悬挂隔水管井间移位分析技术及平台漂移下隔水管脱离预警界限分析技术等3项特殊作业技术,以及隔水管电磁检测技术、隔水管监测技术及深水钻井隔水管完整性管理系统。深水钻井隔水管关键技术已在中国南海、西非等11口深水井的钻井隔水管设计中得到了良好应用,解决了现场技术难题,可为我国深水钻井隔水管的设计和作业提供更全面的技术支撑。  相似文献   

10.
钻井隔水管紧急解脱回弹响应问题是影响深水浮式钻井平台钻井作业安全的重要问题。综合考虑钻井液下泄力、张拉力等因素影响,利用ANSYS/AQWA建立了紧急解脱隔水管回弹耦合计算模型,并以1 500 m水深钻井作业紧急解脱隔水管为例进行了隔水管回弹响应分析。分析结果表明:隔水管解脱后伸缩节响应滞后时间与应力波传播时间一致,且不同张拉力条件下由隔水管重量控制的伸缩节稳定位置相同,证明了本文所建紧急解脱隔水管回弹耦合计算模型的正确性;钻井液密度越大,钻井液下泄力越大,隔水管解脱后底部隔水管总成(LMRP)触底的可能性越大;张拉力对LMRP回弹位移和伸缩节的许用冲程影响较大,张拉力越大,LMRP回弹位移和伸缩节位移越大。本文研究成果可为深水钻井隔水管紧急解脱作业安全提供参考。  相似文献   

11.
深水钻井隔水管连接作业窗口分析   总被引:13,自引:0,他引:13  
采用通用组合确定准则和非线性搜索方法研究深水钻井隔水管连接作业窗口,建立隔水管-井口-导管整体有限元分析模型,并以钻井平台偏移值、表面海流流速和伸缩节冲程组合参数形式确定隔水管连接作业窗口。研究表明,隔水管钻井窗口总体上呈倒锥形:表面海流流速较小时(小于1.0 m/s),钻井窗口主要受底部挠性接头转角的影响,顺流方向海流流速增加会增大底部挠性接头转角,减小允许的平台最大偏移值,逆流方向相反;当表面海流流速超过1.0 m/s时,钻井窗口主要受顶部挠性接头转角的影响,此时在逆流方向海流流速增加会显著增大顶部挠性接头转角,导致钻井窗口迅速缩小。隔水管连接非钻井和启动脱离程序窗口主要受导管最大等效应力限制,随海流流速增大向逆流方向偏移。另外,通过对隔水管连接作业窗口影响因素进行分析,可知适当提高顶张力和降低钻井液密度可有效扩展隔水管的钻井窗口。图7表3参13  相似文献   

12.
中国南海内孤立波自然环境频发,内孤立波下深水锚泊平台-隔水管系统动力学失效风险高,为此建立了内孤立波下的深水锚泊平台-隔水管耦合系统动力学模型及分析方法,开发了深水锚泊平台-隔水管耦合系统动力学求解器,开展内孤立波下深水锚泊平台-隔水管耦合系统动力学特性分析,识别内孤立波下深水锚泊平台与隔水管系统的动力响应、耦合作用规律以及隔水管系统安全弱点。结果表明,在内孤立波作用下深水锚泊平台向内孤立波传播方向运动,当内孤立波波峰到达平台中心位置时锚泊平台的偏移达到最大,然后锚泊平台逐渐向初始平衡位置运动并最终趋于稳定;内孤立波促使隔水管系统顶部向内孤立波传播方向偏转,导致隔水管系统对锚泊平台运动产生一定的促进作用;当锚泊平台位移最大时隔水管系统关键参数响应值最大,但隔水管系统上球铰转角峰值时间有一定的滞后性,下挠性接头转角是内孤立波下的深水钻井隔水管系统安全弱点。  相似文献   

13.
深水钻井隔水管时域非线性动态响应分析技术研究   总被引:5,自引:0,他引:5  
通过深水钻井隔水管时域非线性动态性能的研究,建立了相应的深水钻井隔水管时域非线性动态响应分析模型;基于ABAQUS软件,考虑钻井平台有一定的平均偏移、钻井平台位于不同平均偏移位置且在一阶波浪力作用下随机振动以及长期慢漂运动时钻井平台位于不同平均偏移位置且在一阶和二阶波浪力作用下随机振动等3种主要边界条件,通过实际算例对深水钻井隔水管的随机振动特性进行了仿真分析与对比。研究结论可以为今后深水钻井隔水管的设计与使用提供参考。  相似文献   

14.
常规深水钻井作业由于其特殊的深水低温高压环境,对钻井液的性能提出了更高的要求,在深水环境下,钻井液对气体水合物的抑制性能和低温下良好的流变性能是深水钻井液的关键性能,而赋予这些性能的外加剂——气体水合物抑制剂和流型调节剂则为深水钻井液的关键外加剂。目前水合物抑制剂的评价方法一般采用温度/压力法,即通过实验过程中温度和压力的变化来判断气体水合物的生成与分解,从而判别抑制剂性能的好坏。对流型调节剂的优选评价,一般是通过测定钻井液在作业范围的全温度段的流变性能来体现的,要求钻井液具有恒流变的特性,即钻井液的塑性黏度、动切力、六速旋转黏度计低转速下的读数(φ6,φ3)在作业范围的全温度段的变化较小。  相似文献   

15.
南海八号钻井平台在我国南海某油田钻井作业时,遭遇了内波流的作用,对平台的锚泊系统和钻井作业产生了一定的影响。结合南海特有的内波流环境条件,分析评估了南海八号钻井平台的锚泊能力。首先对平台的锚泊系统配置、海洋环境进行了介绍,然后就平台原设计环境条件进行了锚泊能力评估,平台水动力计算依据三维势流理论,采用挪威船级社DNV的Hydro D和Deep C软件,对南海八号半潜式钻井平台进行了水动力分析,并建立了平台系统耦合运动空间离散有限元模型的动平衡方程。重点评估了内波流作用下平台的定位能力,分析了平台遭遇不同内波流流速下平台的偏移、锚缆张力、锚的水平载荷,提出了可供平台作业方参考的工程建议。  相似文献   

16.
基于隔水管受力分析的深水钻井平台防台风措施优选   总被引:1,自引:0,他引:1  
针对深水平台作业中遭遇台风平台需要优选紧急避航路线的问题,利用有限元分析方法建立了隔水管拖航过程的力学模型,简化波浪和海流作用,得到了软、硬悬挂隔水管长度与许用最大速度关系,制定了深水钻井平台3种防台措施,并给出平台与台风最不利位置计算模型,以某浮式钻井平台紧急防台为例优选防台措施。力学分析表明:隔水管的最大应力和最大弯矩位置出现在近海面处;浮块数量增加,隔水管顶部最大转角会限制平台的最大航速;隔水管较短的情况硬悬挂方式有更快的航速,反之,软悬挂方式最大许用航速大。防台措施表明:根据最不利位置计算模型,可以快速计算出符合的防台位置和防台措施,根据安全和再作业等情况优选出最佳航行路线。  相似文献   

17.
深海半潜式钻井平台的稳性分析   总被引:1,自引:0,他引:1  
阐述了柱稳式平台的稳性衡准要求,以某深海半潜式钻井平台的稳性计算为例,研究了其完整稳性和破损稳性的分析方法,对风倾力矩、进水点、许用重心高度等技术要点进行了深入探讨,并提出了提高半潜式钻井平台稳性的措施.  相似文献   

18.
南海深水钻井完井主要挑战与对策   总被引:1,自引:0,他引:1  
近年来,我国深水油气资源的勘探开发不断取得突破,"海洋石油981"半潜式钻井平台的建成更是将我国深水钻井装备提升到了世界先进水平行列,但是,与国外先进水平相比,我国深水钻井完井还存在缺乏作业经验、工艺及技术水平较低、基础理论研究薄弱等问题。在介绍我国南海深水钻井完井技术研究现状的基础上,分析了南海深水钻井完井面临的技术难点,针对我国南海特殊海洋环境、特殊地质条件及离岸距离远给钻井完井带来的特殊挑战,以安全高效钻井完井为聚焦点,给出了需要进一步攻关的一系列关键技术,并提出了发展建议,以期为我国深水钻井完井技术及理论的发展提供借鉴,最终实现我国南海深水油气资源的高效安全开发。   相似文献   

19.
深水钻井隔水管-导管系统波激疲劳分析   总被引:2,自引:1,他引:2  
波激疲劳是深水钻井隔水管-导管系统最主要的失效模式之一。综合考虑波浪载荷、钻井平台运动和土壤抗力建立了深水钻井隔水管-导管耦合系统波激疲劳分析方法,实例分析了中国南海某井深水钻井隔水管-导管系统波激疲劳寿命,识别出了系统波激疲劳关键部位,并与隔水管常规分析模型的计算结果进行了对比。在此基础上,研究了钻井平台运动幅值、顶张力、下挠性接头转动刚度和井口出泥高度对系统波激疲劳特性的影响。结果表明,常规分析模型将隔水管底部看作固定端导致隔水管波激疲劳损伤过大,而本文提出的隔水管-导管系统分析模型能较好地模拟隔水管实际受力情况;隔水管最大波激疲劳损伤出现在下挠性接头处,导管的最大波激疲劳损伤出现在泥线附近;导管是整个系统中波激疲劳性能最薄弱的环节,适当地减小钻井平台运动幅值、隔水管顶张力、下挠性接头转动刚度和井口出泥高度均能改善导管波激疲劳性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号