首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Computer-aided design of PV/wind hybrid system   总被引:1,自引:0,他引:1  
B. Ai  H. Yang  H. Shen  X. Liao 《Renewable Energy》2003,28(10):1491-1512
A complete set of match calculation methods for optimum sizing of PV/wind hybrid system is presented. In this method, the more accurate and practical mathematic models for characterizing PV module, wind generator and battery are adopted; combining with hourly measured meteorologic data and load data, the performance of a PV/wind hybrid system is determined on a hourly basis; by fixing the capacity of wind generators, the whole year’s LPSP (loss of power supply probability) values of PV/wind hybrid systems with different capacity of PV array and battery bank are calculated, then the trade-off curve between battery bank and PV array capacity is drawn for the given LPSP value; the optimum configuration which can meet the energy demand with the minimum cost can be found by drawing a tangent to the trade-off curve with the slope representing the relationship between cost of PV module and that of the battery. According to this match calculation method, a set of match calculation programs for optimum sizing of PV/wind hybrid systems have been developed. Applying these match calculation programs to an assumed PV/wind hybrid system to be installed at Waglan island of Hong Kong, the optimum configuration and its hourly, daily, monthly and yearly performances are given.  相似文献   

3.
Pumped storage is generally viewed as the most promising technology to increase renewable energy source (RES) penetration levels in power systems and particularly in small autonomous island grids. Combined wind and pumped-storage “virtual power plants”, called hybrid power stations (HPS), constitute a realistic and feasible option to achieve high penetrations, provided that their components are properly sized. In this paper, the optimum sizing is investigated for a pumped storage HPS operating in an island system. The analysis addresses the sizing of the main HPS components (hydro turbines, pumps, wind farm, reservoirs), adopting either the investor’s perspective, where the objective is to maximize the return on the HPS investment, or a system perspective, where the optimization target is the maximization of RES penetration, along with maintaining the lowest possible generation cost in the system. Genetic Algorithms (GAs) are applied for the optimization and a real isolated island power system is used as a study case. The adopted operating policy and pricing principles, which critically affect the optimal sizing of an HPS project, are based on the existing regulatory framework for storage stations in Greek islands.  相似文献   

4.
As non-polluting reliable energy sources, stand-alone photovoltaic/wind/fuel cell (PV/wind/FC) hybrid systems are being studied from various aspects in recent years. In such systems, optimum sizing is the main issue for having a cost-effective system. This paper evaluates the performance of different artificial intelligence (AI) techniques for optimum sizing of a PV/wind/FC hybrid system to continuously satisfy the load demand with the minimal total annual cost. For this aim, the sizing problem is formulated and four well-known heuristic algorithms, namely, particle swarm optimization (PSO), tabu search (TS), simulated annealing (SA), and harmony search (HS), are applied to the system and the results are compared in terms of the total annual cost. It can be seen that not only average results produced by PSO are more promising than those of the other algorithms but also PSO has the most robustness. As another investigation, the sizing is also performed for a PV/wind/battery hybrid system and the results are compared with those of the PV/wind/FC system.  相似文献   

5.
In the wake of rising cost of oil and fears of its exhaustion coupled with increased pollution, the governments world-wide are deliberating and making huge strides to promote renewable energy sources such as solar–photovoltaic (solar–PV) and wind energy. Integration of diesel systems with hybrid wind–PV systems is pursued widely to reduce dependence on fossil-fuel produced energy and to reduce the release of carbon gases that cause global climate change. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (KSA) consume an estimated 10–40% of the total electric energy generated. The study reviews research work carried out world-wide on wind farms and solar parks. The work also analyzes wind speed and solar radiation data of East-Coast (Dhahran), KSA, to assess the technical and economic potential of wind farm and solar PV park (hybrid wind–PV–diesel power systems) to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The monthly average daily solar global radiation ranges from 3.61 to 7.96 kWh/m2. The hybrid systems simulated consist of different combinations of 100 kW wind machines, PV panels, supplemented by diesel generators. NREL (and HOMER Energy's) HOMER software has been used to perform the techno-economic study. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity (37 m hub-height) and 40 kW of PV capacity together with 175 kW diesel system, the renewable energy fraction (with 0% annual capacity shortage) is 36% (24% wind + 12% PV). The cost of generating energy (COE, $/kWh) from this hybrid wind–PV–diesel system has been found to be 0.154 $/kWh (assuming diesel fuel price of 0.1$/L). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel generators decreases with increase in wind farm and PV capacity. Attention has also been focused on wind/PV penetration, un-met load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind–PV–diesel systems, COE of different hybrid systems, etc.  相似文献   

6.
The main objective of the present study is the integration of hydrogen technologies as an energy storage medium in a hybrid power system. The existing power system of the island of Milos, which is based on fossil fuel generators and a small wind park, is assessed in the context of this paper. System level simulation results, from both technical and economic point of view, are presented for the currently existing and the proposed island's hybrid power system. The latter integrates a higher number of wind turbines and hydrogen technologies as energy storage medium, and the two system architectures are being compared taking into account not only technical and economic parameters but also Green House – Gas (GHG) emissions, fossil fuels consumption and Renewable Energy Sources (RES) penetration increase. Moreover, a sensitivity analysis has been performed in order to determine the contribution of hydrogen technologies equipment costs; with the cost of energy produced (COE) being the critical parameter. Results show that COE for the proposed power system is higher than the existing one, but on the other hand GHG emissions and fossil fuel consumption are significantly reduced. In addition, RES penetration increases dramatically and the sensitivity analysis indicates that a further reduction in hydrogen technologies equipment and subsidy on wind turbine costs would make RES & Hydrogen-based systems economically competitive to the existing power system of the island.  相似文献   

7.
Electrification to rural and remote areas with limited or no access to grid connection is one of the most challenging issues in developing countries like Colombia. Due to the recent concerns about the global climatic change and diminishing fuel prices, searching for reliable, environmental friendly and renewable energy sources to satisfy the rising electrical energy demand has become vital. This study aims at analyzing the application of photovoltaic (PV) panels, wind turbines and diesel generators in a stand-alone hybrid power generation system for rural electrification in three off-grid villages in Colombia with different climatic characteristics. The areas have been selected according to the “Colombia’s development plan 2011–2030 for non-conventional sources of energy”. First, different combinations of wind turbine, PV, and diesel generator are modeled and optimized to determine the most energy-efficient and cost-effective configuration for each location. HOMER software has been used to perform a techno-economic feasibility of the proposed hybrid systems, taking into account net present cost, initial capital cost, and cost of energy as economic indicators.  相似文献   

8.
风光互补发电系统的优化设计(I) CAD设计方法   总被引:2,自引:0,他引:2  
给出了一整套利用CAD进行风光互补发电系统优化设计的方法。为了精确确定系统每小时的运行状态,采用了更精确地表征组件特性及评估实际获得的风光资源的数学模型。为了寻找出以最小设备投资成本满足用户用电要求的系统配置,首先在风力发电机容量固定不变的前提下,计算了与该容量风力发电机匹配的不同容量的PV方阵和蓄电池所组成的风/光/蓄组合的全年功率供给亏欠率LPSP,根据总的设备投资成本最小化的原则筛选出一组与该容量风力发电机对应的满足用户给定系统供电可靠性即LPSP值的风/光/蓄组合;然后通过改变风力发电机的容量,优选出多个与不同容量风力发电机对应的既能满足用户用电要求同时总的设备购置成本又是最低的风/光/蓄组合,比较它们的成本最终唯一确定出以最小投资成本满足用户用电要求的优化的系统配置。  相似文献   

9.
This paper develops the Hybrid Solar-Wind System Optimization Sizing (HSWSO) model, to optimize the capacity sizes of different components of hybrid solar-wind power generation systems employing a battery bank. The HSWSO model consists of three parts: the model of the hybrid system, the model of Loss of Power Supply Probability (LPSP) and the model of the Levelised Cost of Energy (LCE). The flow chart of the HSWSO model is also illustrated. With the incorporated HSWSO model, the sizing optimization of hybrid solar-wind power generation systems can be achieved technically and economically according to the system reliability requirements. A case study is reported to show the importance of the HSWSO model for sizing the capacities of wind turbines, PV panel and battery banks of a hybrid solar-wind renewable energy system.  相似文献   

10.
System power reliability under varying weather conditions and the corresponding system cost are the two main concerns for designing hybrid solar–wind power generation systems. This paper recommends an optimal sizing method to optimize the configurations of a hybrid solar–wind system employing battery banks. Based on a genetic algorithm (GA), which has the ability to attain the global optimum with relative computational simplicity, one optimal sizing method was developed to calculate the optimum system configuration that can achieve the customers required loss of power supply probability (LPSP) with a minimum annualized cost of system (ACS). The decision variables included in the optimization process are the PV module number, wind turbine number, battery number, PV module slope angle and wind turbine installation height. The proposed method has been applied to the analysis of a hybrid system which supplies power for a telecommunication relay station, and good optimization performance has been found. Furthermore, the relationships between system power reliability and system configurations were also given.  相似文献   

11.
There is a constant growth in energy consumption and consequently energy generation around the world. During the recent decades, renewable energy sources took heed of scientists and policy makers as a remedy for substituting traditional sources. Wind and photovoltaic (PV) are the least reliable sources because of their dependence on wind speed and irradiance and therefore their intermittent nature. Energy storage systems are usually coupled with these sources to increase the reliability of the hybrid system. Environmental effects are one of the biggest concerns associated with the renewable energy sources. This study summarizes the last and most important environmental and economic analysis of a grid‐connected hybrid network consisting of wind turbine, PV panels, and energy storage systems. Focusing on environmental aspects, this paper reviews land efficiency, shaded analysis of wind turbines and PV panels, greenhouse gas emission, wastes of wind turbine and PV panels' components, fossil fuel consumption, wildlife, sensitive ecosystems, health benefits, and so on. A cost analysis of the energy generated by a hybrid system has been discussed. Furthermore, this study reviews the latest technologies for materials that have been used for solar PV manufacturing. This paper can help to make a right decision considering all aspects of installing a hybrid system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, a reliable methodology incorporated mine blast algorithm (MBA) is applied to solve the optimal sizing of a hybrid system consisting of photovoltaic modules, wind turbines and fuel cells (PV/WT/FC) to meet a certain load of remote area in Egypt. The main objective of the optimal sizing process is to achieve the minimum annual cost of the system with load coverage. The sizing process is performed optimally based on real measured data for solar radiation, ambient temperature and wind velocity recorded by the solar radiation and meteorological station located at national research institute of astronomy and geophysics, Helwan city, Egypt. Three other meta-heuristic optimization techniques, particle swarm optimization, cuckoo search and artificial bee colony are applied to solve the problem and the results are compared with those obtained by the proposed methodology. A power management strategy that regulates the power flow between each system component is also presented. The obtained results show that; applying the proposed methodology will save about 24.8% in the annual total cost of the proposed system compared with PSO, 8.956% compared with CS and 11.5576% compared with ABC. The proposed algorithm based on MBA is candidate for solving the presented optimization problem of optimal sizing the hybrid PV/WT/FC system.  相似文献   

13.
In this paper, a dynamic multiobjective particle swarm optimization (DMOPSO) method is presented for the optimal design of hybrid renewable energy systems (HRESs). The main goal of the design is to minimize simultaneously the total net present cost (NPC) of the system, unmet load, and fuel emission. A DMOPSO‐simulation based approach has been used to approximate a worthy Pareto front (PF) to help decision makers in selecting an optimal configuration for an HRES. The proposed method is examined for a case study including wind turbines, photovoltaic (PV) panels, diesel generators, batteries, fuel cells, electrolyzer, and hydrogen tanks. Well‐known metrics are used to evaluate the generated PF. The average spacing and diversification metrics obtained by the proposed approach are 1386 and 4656, respectively. Additionally, the set coverage metric value shows that at least 67% of Pareto solutions obtained by DMOPSO dominate the solutions resulted by other reported algorithms. By using a sensitivity analysis for the case study, it is found that if the PV panel and wind turbine capital cost are decreased by 50%, the total NPC of the system would be decreased by 18.8 and 3.7%, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Economic and environmental concerns over fossil fuels encourage the development of photovoltaic (PV) energy systems. Due to the intermittent nature of solar energy, energy storage is needed in a stand-alone PV system for the purpose of ensuring continuous power flow. Three stand-alone photovoltaic power systems using different energy storage technologies are studied in this paper. Key components including PV modules, fuel cells, electrolyzers, compressors, hydrogen tanks and batteries are modeled in a clear way so as to facilitate the evaluation of the power systems. Based on energy storage technology, a method of ascertaining minimal system configuration is designed to perform the sizing optimization and reveal the correlations between the system cost and the system efficiency. The three hybrid power systems, i.e., photovoltaic/battery (PV/Battery) system, photovoltaic/fuel cell (PV/FC) system, and photovoltaic/fuel cell/battery (PV/FC/Battery) system, are optimized, analyzed and compared. The obtained results indicate that maximizing the system efficiency while minimizing system cost is a multi-objective optimization problem. As a trade-off solution to the problem, the proposed PV/FC/Battery hybrid system is found to be the configuration with lower cost, higher efficiency and less PV modules as compared with either single storage system.  相似文献   

15.
风光互补独立供电系统的优化设计   总被引:6,自引:0,他引:6  
在设计风光互补独立供电系统时,系统中需要优化的不仅有光伏电池和蓄电池的容量,还应该有风力发电机种类和容量以及光伏电池的倾角。优化目标为系统安装成本,约束条件为供电可靠性,其指标负载缺电率LP- SP需经仿真运行得到。本问题属于非线性整数规划,也是一个NP-hard问题。用包含精英策略的遗传算法优化,以自适应罚函数法处理约束。计算和验证表明本文采用的算法收敛,能同时优化风力发电机类型和容量、光伏电池的容量和倾角以及蓄电池的容量,并且计算效率高。  相似文献   

16.
Renewable energy sources have been taken the place of the traditional energy sources and especially rapidly developments of photovoltaic (PV) technology and fuel cell (FC) technology have been put forward these renewable energy sources (RES) in all other RES. PV systems have been started to be used widely in domestic applications connected to electrical grid and grid connected PV power generating systems have become widespread all around the world. On the other hand, fuel cell power generating systems have been used to support the PV generating so hybrid generation systems consist of PV and fuel cell technology are investigated for power generating. In this study, a grid connected fuel cell and PV hybrid power generating system was developed with Matlab Simulink. 160 Wp solar module was developed based on solar module temperature and solar irradiation by using real data sheet of a commercial PV module and then by using these modules 800 Wp PV generator was obtained. Output current and voltage of PV system was used for input of DC/DC boost converter and its output was used for the input of the inverter. PV system was connected to the grid and designed 5 kW solid oxide fuel cell (SOFC) system was used for supporting the DC bus of the hybrid power generating system. All results obtained from the simulated hybrid power system were explained in the paper. Proposed model was designed as modular so designing and simulating grid connected SOFC and PV systems can be developed easily thanks to flexible design.  相似文献   

17.
As the development of China's economy, environmental problems in China become more and more serious. Solar energy and wind energy are considered as ones of the best choices to solve the environmental problems in China and the hybrid wind/solar distributed generation (DG) system has received increasing attention recently. However, the instability and intermittency of the wind and solar energy throw a huge challenge on designing of the hybrid system. In order to ensure the continuous and stable power supply, optimal unit sizing of the hybrid wind/solar DG system should be taken into consideration in the design of the hybrid system. This paper establishes a multi-objective optimization framework based on cost, electricity efficiency and energy supply reliability models of the hybrid DG system, which is composed of wind, solar and fuel cell generation systems. Detailed models of each unit for the hybrid wind/solar/fuel cell system were established. Advanced ε-constraints method based on Hammersley Sequence Sampling was employed in the multi-objective optimization of the hybrid DG system. The approximate Pareto surface of the multi-objective optimization problems with a range of possible design solutions and a logical procedure for searching the global optimum solution for decision makers were presented. In this way, this work provided an efficient method for decision makers in the design of the hybrid wind/solar/fuel cell system.  相似文献   

18.
This paper presents an optimum sizing methodology to optimize the hybrid energy system (HES) configuration based on genetic algorithm. The proposed optimization model has been applied to evaluate the techno‐economic prospective of the HES to meet the load demand of a remote village in the northern part of Saudi Arabia. The optimum configuration is not achieved only by selecting the combination with the lowest cost but also by finding a suitable renewable energy fraction that satisfies load demand requirements with zero rejected loads. Moreover, the economic, technical and environmental characteristics of nine different HES configurations were investigated and weighed against their performance. The simulation results indicated that the optimum wind turbine (WT) selection is not affected only by the WT speed parameters or by the WT rated power but also by the desired renewable energy fraction. It was found that the rated speed of the WT has a significant effect on optimum WT selection, whereas the WT rated power has no consistent effect on optimal WT selection. Moreover, the results clearly indicated that the HES consisting of photovoltaics (PV), WT, battery bank (Batt) and diesel generator (DG) has superiority over all the nine systems studied here in terms of economical and environmental performance. The PV/Batt/DG hybrid system is only feasible when wind resource is very limited and solar energy density is high. On the other hand, the WT/Batt/DG hybrid system is only feasible at high wind speed and low solar energy density. It was also found that the inclusion of batteries reduced the required DG and hence reduced fuel consumption and operating and maintenance cost. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Recently, the increasing energy demand has caused dramatic consumption of fossil fuels and unavoidable raising energy prices. Moreover, environmental effect of fossil fuel led to the need of using renewable energy (RE) to meet the rising energy demand. Unpredictability and the high cost of the renewable energy technologies are the main challenges of renewable energy usage. In this context, the integration of renewable energy sources to meet the energy demand of a given area is a promising scenario to overcome the RE challenges. In this study, a novel approach is proposed for optimal design of hybrid renewable energy systems (HRES) including various generators and storage devices. The ε-constraint method has been applied to minimize simultaneously the total cost of the system, unmet load, and fuel emission. A particle swarm optimization (PSO)-simulation based approach has been used to tackle the multi-objective optimization problem. The proposed approach has been tested on a case study of an HRES system that includes wind turbine, photovoltaic (PV) panels, diesel generator, batteries, fuel cell (FC), electrolyzer and hydrogen tank. Finally, a sensitivity analysis study is performed to study the sensibility of different parameters to the developed model.  相似文献   

20.
A stand-alone power system based on a photovoltaic array and wind generators that stores the excessive energy from renewable energy sources (RES) in the form of hydrogen via water electrolysis for future use in a polymer electrolyte membrane (PEM) fuel cell is currently in operation at Neo Olvio of Xanthi, Greece. Efficient power management strategies (PMSs) for the system have been developed. The PMSs have been assessed on their capacity to meet the power load requirements through effective utilization of the electrolyzer and fuel cell under variable energy generation from RES (solar and wind). The evaluation of the PMS has been performed through simulated experiments with anticipated conditions over a typical four-month time period for the region of installation. The key decision factors for the PMSs are the level of the power provided by the RES and the state of charge (SOC) of the accumulator. Therefore, the operating policies for the hydrogen production via water electrolysis and the hydrogen consumption at the fuel cell depend on the excess or shortage of power from the RES and the level of SOC. A parametric sensitivity analysis investigates the influence of major operating variables for the PMSs such as the minimum SOC level and the operating characteristics of the electrolyzer and the fuel cell in the performance of the integrated system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号