首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Nonalcoholic fatty liver disease begins with a relatively benign hepatic steatosis, often associated with increased adiposity, but may progress to a more severe nonalcoholic steatohepatitis with inflammation. A subset of these patients develops progressive fibrosis and ultimately cirrhosis. Various dietary components have been shown to contribute to the development of liver disease, including fat, sugars, and neonatal treatment with high doses of monosodium glutamate (MSG). However, rodent models of progressive disease have been disappointing, and alternative animal models of diet-induced liver disease would be desirable, particularly if they contribute to our knowledge of changes in gene expression as a result of dietary manipulation. The domestic cat has previously been shown to be an appropriate model for examining metabolic changes–associated human diseases such as diabetes. Our aim was therefore to compare changes in hepatic gene expression induced by dietary MSG, with that of a diet containing Trans-fat and high fructose corn syrup (HFCS), using a feline model. MSG treatment increased adiposity and promoted hepatic steatosis compared to control (P < 0.05). Exposure to Trans-fat and HFCS promoted hepatic fibrosis and markers of liver dysfunction. Affymetrix microarray analysis of hepatic gene expression showed that dietary MSG promoted the expression of genes involved in cholesterol and steroid metabolism. Conversely, Trans-fat and HFCS feeding promoted the expression of genes involved in lipolysis, glycolysis, liver damage/regeneration, and fibrosis. Our feline model examining gene–diet interactions (nutrigenomics) demonstrates how dietary MSG, Trans-fat, and HFCS may contribute to the development of hepatic steatosis.  相似文献   

2.
3.
Western-type diets can induce obesity and related conditions such as dyslipidemia, insulin resistance and hepatic steatosis. We evaluated the effects of milk sphingomyelin (SM) and egg SM on diet-induced obesity, the development of hepatic steatosis and adipose inflammation in C57BL/6J mice fed a high-fat, cholesterol-enriched diet for 10 weeks. Mice were fed a low-fat diet (10% kcal from fat) (n=10), a high-fat diet (60% kcal from fat) (HFD, n=14) or a high-fat diet modified to contain either 0.1% (w/w) milk SM (n=14) or 0.1% (w/w) egg SM (n=14). After 10 weeks, egg SM ameliorated weight gain, hypercholesterolemia and hyperglycemia induced by HFD. Both egg SM and milk SM attenuated hepatic steatosis development, with significantly lower hepatic triglycerides (TGs) and cholesterol relative to HFD. This reduction in hepatic steatosis was stronger with egg SM supplementation relative to milk SM. Reductions in hepatic TGs observed with dietary SM were associated with lower hepatic mRNA expression of PPARγ-related genes: Scd1 and Pparg2 in both SM groups, and Cd36 and Fabp4 with egg SM. Egg SM and, to a lesser extent, milk SM reduced inflammation and markers of macrophage infiltration in adipose tissue. Egg SM also reduced skeletal muscle TG content compared to HFD. Overall, the current study provides evidence of dietary SM improving metabolic complications associated with diet-induced obesity in mice. Further research is warranted to understand the differences in bioactivity observed between egg and milk SM.  相似文献   

4.
While non-alcoholic fatty liver disease (NAFLD) represents the common cause of chronic liver disease, specific therapies are currently unavailable. The wine industry produces millions of tons of residue (pomace), which contains high levels of bioactive phytochemicals. The aim of this study was to clarify the potential benefits of grape pomace for the treatment of NAFLD at different levels of severity, and to clarify the mechanism of action. C57Bl/6 mice were given high fat diet (HFD) or western diet (WD) as models of obesity and hepatic steatosis or steatohepatitis, respectively, with or without pomace supplementation (50–250 mg/day). Pomace inhibited food intake, and reduced serum leptin and body weight gain. Ectopic fat deposition was reduced, while white adipose tissue mass was preserved. In addition, pomace improved glucose tolerance and insulin sensitivity, prevented the development of adipose tissue inflammation, and reduced hepatic steatosis. Higher expression of genes involved in fatty acids transport and oxidation was observed in adipose tissue, while lipogenic genes were attenuated in the liver of pomace-treated mice. In WD-fed mice, pomace reduced the severity of hepatic steatosis and inflammation and improved blood lipid profile, but was ineffective in reversing hepatic damage of advanced NASH. In conclusion, pomace improved insulin sensitivity and reduced ectopic fat deposition, leading to a healthier metabolic profile. Pomace may hold the potential as a supplement with beneficial health outcomes for the prevention and treatment of hepatic steatosis and other obesity-related pathologies.  相似文献   

5.
Despite the high prevalence of nonalcoholic fatty liver disease (NAFLD), little is known of its pathogenesis based on study of human liver samples. By the use of Affymetrix GeneChips (17,601 genes), we investigated gene expression in the human liver of subjects with extreme steatosis due to NAFLD without histological signs of inflammation (liver fat 66.0 +/- 6.8%) and in subjects with low liver fat content (6.4 +/- 2.7%). The data were analyzed by using sequence-based reannotation of Affymetrix probes and a robust model-based normalization method. We identified genes involved in hepatic glucose and lipid metabolism, insulin signaling, inflammation, coagulation, and cell adhesion to be significantly associated with liver fat content. In addition, genes involved in ceramide signaling (MAP2K4) and metabolism (UGCG) were found to be positively associated with liver fat content. Genes involved in lipid metabolism (PLIN, ACADM), fatty acid transport (FABP4, CD36), amino acid catabolism (BCAT1), and inflammation (CCL2) were validated by real-time PCR and were found to be upregulated in subjects with high liver fat content. The data show that multiple changes in gene expression characterize simple steatosis.  相似文献   

6.
Nonalcoholic fatty liver disease (NAFLD) is associated with obesity and insulin resistance. It is also a predisposing factor for type 2 diabetes. Dietary factors are believed to contribute to all three diseases. NAFLD is characterized by increased intrahepatic fat and mitochondrial dysfunction, and its etiology may be attributed to excessive fructose intake. Consumption of high fructose corn syrup‐55 (HFCS‐55) stands at up to 15% of the average total daily energy intake in the United States, and is linked to weight gain and obesity. The aim of this study was to establish whether HFCS‐55 could contribute to the pathogenesis of NAFLD, by examining the effects of HFCS‐55 on hepatocyte lipogenesis, insulin signaling, and cellular function, in vitro and in vivo. Exposure of hepatocytes to HFCS‐55 caused a significant increase in hepatocellular triglyceride (TG) and lipogenic proteins. Basal production of reactive oxygen metabolite (ROM) was increased, together with a decreased capacity to respond to an oxidative challenge. HFCS‐55 induced a downregulation of the insulin signaling pathway, as indicated by attenuated ser473phosphorylation of AKT1. The c‐Jun amino‐terminal kinase (JNK), which is intimately linked to insulin resistance, was also activated; and this was accompanied by an increase in endoplasmic reticulum (ER) stress and intracellular free calcium perturbation. Hepatocytes exposed to HFCS‐55 exhibited mitochondrial dysfunction and released cytochrome C (CytC) into the cytosol. Hepatic steatosis and mitochondrial disruption was induced in vivo by a diet enriched with 20% HFCS 55; accompanied by hypoadiponectinemia and elevated fasting serum insulin and retinol‐binding protein‐4 (RBP4) levels. Taken together our findings indicate a potential mechanism by which HFCS‐55 may contribute to the pathogenesis of NAFLD.  相似文献   

7.
Time-restricted feeding (TRF) can reduce adiposity and lessen the co-morbidities of obesity. Mice consuming obesogenic high-fat (HF) diets develop insulin resistance and hepatic steatosis, but have elevated indices of long-chain polyunsaturated fatty acids (LCPUFA) that may be beneficial. While TRF impacts lipid metabolism, scant data exist regarding the impact of TRF upon lipidomic composition of tissues. We (1) tested the hypothesis that TRF of a HF diet elevates LCPUFA indices while preventing insulin resistance and hepatic steatosis and (2) determined the impact of TRF upon the lipidome in plasma, liver, and adipose tissue. For 12 weeks, male, adult mice were fed a control diet ad libitum, a HF diet ad libitum (HF-AL), or a HF diet with TRF, 12 hours during the dark phase (HF-TRF). HF-TRF prevented insulin resistance and hepatic steatosis resulting from by HF-AL treatment. TRF-blocked plasma increases in LCPUFA induced by HF-AL treatment but elevated concentrations of triacylglycerols and non-esterified saturated fatty acids. Analysis of the hepatic lipidome demonstrated that TRF did not elevate LCPUFA while reducing steatosis. However, TRF created (1) a separate hepatic lipid signature for triacylglycerols, phosphatidylcholine, and phosphatidylethanolamine species and (2) modified gene and protein expression consistent with reduced fatty acid synthesis and restoration of diurnal gene signaling. TRF increased the saturated fatty acid content in visceral adipose tissue. In summary, TRF of a HF diet alters the lipidomic profile of plasma, liver, and adipose tissue, creating a third distinct lipid metabolic state indicative of positive metabolic adaptations following HF intake.  相似文献   

8.
9.
Secreted frizzled-related protein (sFRP) 4 is an adipokine with increased expression in white adipose tissue from obese subjects with type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Yet, it is unknown whether sFRP4 action contributes to the development of these pathologies. Here, we determined whether sFRP4 expression in visceral fat associates with NAFLD and whether it directly interferes with insulin action and lipid and glucose metabolism in primary hepatocytes and myotubes. The association of sFRP4 with clinical measures was investigated in obese men with or without type 2 diabetes and with or without biopsy-proven NAFLD. To determine the impact of sFRP4 on metabolic parameters, primary human myotubes (hSkMC), or primary hepatocytes from metabolic healthy C57Bl6 and from systemic insulin-resistant mice, i.e. aP2-SREBP-1c, were used. Gene expression of sFRP4 in visceral fat from obese men associated with insulin sensitivity, triglycerides and NAFLD. In C57Bl6 hepatocytes, sFRP4 disturbed insulin action. Specifically, sFRP4 decreased the abundance of IRS1 and FoxO1 together with impaired insulin-mediated activation of Akt-signalling and glycogen synthesis and a reduced suppression of gluconeogenesis by insulin. Moreover, sFRP4 enhanced insulin-stimulated hepatic de novo lipogenesis (DNL). In hSkMC, sFRP4 induced glycolysis rather than inhibiting insulin signalling. Finally, in hepatocytes from aP2-SREBP-1c mice, sFRP4 potentiates existing insulin resistance. Collectively, we show that sFRP4 interferes with hepatocyte insulin action. Physiologically, sFRP4 promotes DNL in hepatocytes and glycolysis in myotubes. These sFRP4-mediated responses may result in a vicious cycle, in which enhanced rates of DNL and glycolysis aggravate hepatic lipid accumulation and insulin resistance.  相似文献   

10.
The major risk factors for non-alcoholic fatty liver disease (NAFLD) are obesity, insulin resistance and dyslipidemia. The cause for progression from the steatosis stage to the inflammatory condition (non-alcoholic steatohepatitis (NASH)) remains elusive at present. Aim of this study was to test whether the different stages of NAFLD as well as the associated metabolic abnormalities can be recreated in time in an overfed mouse model and study the mechanisms underlying the transition from steatosis to NASH.Male C57Bl/6J mice were subjected to continuous intragastric overfeeding with a high-fat liquid diet (HFLD) for different time periods. Mice fed a solid high-fat diet (HFD) ad libitum served as controls. Liver histology and metabolic characteristics of liver, white adipose tisue (WAT) and plasma were studied.Both HFD-fed and HFLD-overfed mice initially developed liver steatosis, but only the latter progressed in time to NASH. NASH coincided with obesity, hyperinsulinemia, loss of liver glycogen and hepatic endoplasmatic reticulum stress. Peroxisome proliferator-activated receptor γ (Pparγ), fibroblast growth factor 21 (Fgf21), fatty acid binding protein (Fabp) and fatty acid translocase (CD36) were induced exclusively in the livers of the HFLD-overfed mice. Inflammation, reduced adiponectin expression and altered expression of genes that influence adipogenic capacity were only observed in WAT of HFLD-overfed mice.In conclusion: this dietary mouse model displays the different stages and the metabolic settings often found in human NAFLD. Lipotoxicity due to compromised adipose tissue function is likely associated with the progression to NASH, but whether this is cause or consequence remains to be established.  相似文献   

11.
Yang JS  Kim JT  Jeon J  Park HS  Kang GH  Park KS  Lee HK  Kim S  Cho YM 《PloS one》2010,5(11):e13858
Nonalcoholic fatty liver disease (NAFLD) is highly prevalent and associated with considerable morbidities. Unfortunately, there is no currently available drug established to treat NAFLD. It was recently reported that intraperitoneal administration of taurine-conjugated ursodeoxycholic acid (TUDCA) improved hepatic steatosis in ob/ob mice. We hereby examined the effect of oral TUDCA treatment on hepatic steatosis and associated changes in hepatic gene expression in ob/ob mice. We administered TUDCA to ob/ob mice at a dose of 500 mg/kg twice a day by gastric gavage for 3 weeks. Body weight, glucose homeostasis, endoplasmic reticulum (ER) stress, and hepatic gene expression were examined in comparison with control ob/ob mice and normal littermate C57BL/6J mice. Compared to the control ob/ob mice, TUDCA treated ob/ob mice revealed markedly reduced liver fat stained by oil red O (44.2±5.8% vs. 21.1±10.4%, P<0.05), whereas there was no difference in body weight, oral glucose tolerance, insulin sensitivity, and ER stress. Microarray analysis of hepatic gene expression demonstrated that oral TUDCA treatment mainly decreased the expression of genes involved in de novo lipogenesis among the components of lipid homeostasis. At pathway levels, oral TUDCA altered the genes regulating amino acid, carbohydrate, and drug metabolism in addition to lipid metabolism. In summary, oral TUDCA treatment decreased hepatic steatosis in ob/ob mice by cooperative regulation of multiple metabolic pathways, particularly by reducing the expression of genes known to regulate de novo lipogenesis.  相似文献   

12.
Metabolic syndrome is a combination of medical disorders that increases the risk of developing cardiovascular disease and diabetes. Constitutive overexpression of 11β-HSD1 in adipose tissue in mice leads to metabolic syndrome. In the process of generating transgenic mice overexpressing 11β-HSD1 in an inducible manner, we found a metabolic syndrome phenotype in control, transgenic mice, expressing the reverse tetracycline-transactivator (rtTA) in adipose tissue. The control mice exhibited all four sequelae of metabolic syndrome (visceral obesity, insulin resistance, dyslipidemia, and hypertension), a pro-inflammatory state and marked hepatic steatosis. Gene expression profiling of the adipose tissue, muscle and liver of these mice revealed changes in expression of genes involved in lipid metabolism, insulin resistance, and inflammation. Transient transfection of rtTA, but not tTS, into 3T3-L1 cells resulted in lipid accumulation. We conclude that expression of rtTA in adipose tissue causes metabolic syndrome in mice.  相似文献   

13.
BackgroundPolychlorinated biphenyls (PCBs) are persistent environmental pollutants that are detectable in the serum of all American adults. Amongst PCB congeners, PCB 153 has the highest serum level. PCBs have been dose-dependently associated with obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in epidemiological studies.ObjectiveThe purpose of this study is to determine mechanisms by which PCB 153 worsens diet-induced obesity and NAFLD in male mice fed a high-fat diet (HFD).MethodsMale C57BL6/J mice were fed either control or 42% milk fat diet for 12 weeks with or without PCB 153 coexposure (50 mg/kg ip ×4). Glucose tolerance test was performed, and plasma and tissues were obtained at necropsy for measurements of adipocytokine levels, histology and gene expression.ResultsIn control diet-fed mice, addition of PCB 153 had minimal effects on any of the measured parameters. However, PCB 153 treatment in high-fat-fed mice was associated with increased visceral adiposity, hepatic steatosis and plasma adipokines including adiponectin, leptin, resistin and plasminogen activator inhibitor-1 levels. Likewise, coexposure reduced expression of hepatic genes implicated in β-oxidation while increasing the expression of genes associated with lipid biosynthesis. Regardless of diet, PCB 153 had no effect on insulin resistance or tumor necrosis factor alpha levels.ConclusionPCB 153 is an obesogen that exacerbates hepatic steatosis, alters adipocytokines and disrupts normal hepatic lipid metabolism when administered with HFD but not control diet. Because all US adults have been exposed to PCB 153, this particular nutrient–toxicant interaction potentially impacts human obesity/NAFLD.  相似文献   

14.
Diet-related obesity is a major metabolic disorder. Excessive fat mass is associated with type 2 diabetes, hepatic steatosis, and arteriosclerosis. Dysregulation of lipid metabolism and adipose tissue function contributes to diet-induced obesity. Here, we report that β-arrestin-1 knock-out mice are susceptible to diet-induced obesity. Knock-out of the gene encoding β-arrestin-1 caused increased fat mass accumulation and decreased whole-body insulin sensitivity in mice fed a high-fat diet. In β-arrestin-1 knock-out mice, we observed disrupted food intake and energy expenditure and increased macrophage infiltration in white adipose tissue. At the molecular level, β-arrestin-1 deficiency affected the expression of many lipid metabolic genes and inflammatory genes in adipose tissue. Consistently, transgenic overexpression of β-arrestin-1 repressed diet-induced obesity and improved glucose tolerance and systemic insulin sensitivity. Thus, our findings reveal that β-arrestin-1 plays a role in metabolism regulation.  相似文献   

15.
16.
This study aimed at investigating whether the weight loss due to energy‐restricted high‐fat diets is accompanied with parallel improvements in metabolic markers and adipose tissue inflammation. Eight‐week‐old C57BL/6J mice were given free access to a low‐fat (LF) or a high‐fat (45% of energy from fat—HF) diet for 6 months. Restricting intake of the HF diet by 30% (HFR) during the last 2 months of the HF feeding trial decreased fasting plasma insulin, homeostasis model assessment of insulin resistance (HOMAIR), and plasma triglyceride levels and improved hepatic steatosis compared to ad libitum HF feeding, indicating an improved metabolic profile. Further, analysis of gonadal white adipose tissue (GWAT) gene expression by microarray and quantitative PCR analyses demonstrated that HFR downregulated expression of genes linked to cell and focal adhesion, cytokine‐cytokine receptor interaction, and endoplasmic reticulum (ER)–associated degradation pathway. However, HFR had no effect on circulating plasminogen activator inhibitor‐1 (PAI‐1) and nonesterified fatty acid levels, which were persistently higher in both HF and HFR groups compared to the LF group. Furthermore, HFR had a negative effect on plasma total adiponectin level. Finally, while HFR decreased GWAT monocyte chemotactic protein‐1 (MCP‐1), interleukin‐2 (IL‐2), and PAI‐1 levels, it did not affect several other cytokines including granulocyte‐macrophage colony‐stimulating factor, interferon‐γ, IL‐1β, IL‐6, and IL‐10. In summary, energy‐restricted high‐fat diets improve insulin sensitivity, while only partially improving markers of systemic and adipose tissue inflammation. In conclusion, our study supports the recommended low‐fat intake for overall cardiovascular health.  相似文献   

17.
18.
Obesity and its associated non-alcoholic fatty liver disease (NAFLD) have become epidemic medical problems worldwide; however, the current available therapeutic options are limited. Farnesoid X receptor (FXR) has recently emerged as an attractive target for obesity treatment. Here we demonstrate that isotschimgine (ITG), a constituent in genus Ferula, as a novel FXR agonist with anti-obesity and anti-hepatic steatosis effects. The results showed that ITG activated the FXR transactivity and bound with the ligand binding dormain (LBD) of FXR with gene reporter assays and AlphaScreen assays. In high-fat diet-induced obese (DIO) mice, ITG lowered body weight and fat mass, improved insulin resistance and hepatic steatosis. Mechanistic studies showed that ITG altered the expression levels of FXR downstream genes, lipid synthesis and energy metabolism genes in the liver of mice. Our findings suggest that ITG is a novel FXR agonist and may be a potential therapeutic choice for obesity associated with NAFLD.  相似文献   

19.
The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fructose corn syrup (HFCS) equivalent for 1-16 wk were compared with mice fed standard chow or mice with trans fats or HFCS omitted. Cage racks were removed from western diet mice to promote sedentary behavior. By 16 wk, trans fat-fed mice became obese and developed severe hepatic steatosis with associated necroinflammatory changes. Plasma alanine aminotransferase levels increased, as did liver TNF-alpha and procollagen mRNA, indicating an inflammatory and profibrogenic response to injury. Glucose intolerance and impaired fasting glucose developed within 2 and 4 wk, respectively. Plasma insulin, resistin, and leptin levels increased in a profile similar to that seen in patients with NASH. The individual components of this diet contributed to the phenotype independently; isocaloric replacement of trans fats with lard established that trans fats played a major role in promoting hepatic steatosis and injury, whereas inclusion of HFCS promoted food consumption, obesity, and impaired insulin sensitivity. Combining risk factors for the metabolic syndrome by feeding mice trans fats and HFCS induced histological features of NASH in the context of a metabolic profile similar to patients with this disease. Because dietary trans fats promoted liver steatosis and injury, their role in the epidemic of NASH needs further evaluation.  相似文献   

20.
The overaccumulation of triglycerides in hepatocytes induces hepatic steatosis; however, little is known about the mechanism of goose hepatic steatosis. The aim of this study was to define an experimental model of hepatocellular steatosis with TG overaccumulation and minimal cytotoxicity, using a mixture of various proportions of oleate and palmitate free fatty acids (FFAs) to induce fat‐overloading, then using suppressive subtractive hybridization and a quantitative PCR approach to identify genes with higher or lower expression levels after the treatment of cells with FFA mixtures. Overall, 502 differentially expressed clones, representing 21 novel genes and 87 known genes, were detected by SSH. Based on functional clustering, up‐ and down‐regulated genes were mostly related to carbohydrate and lipid metabolism, enzyme activity and signal transduction. The expression of 20 selected clones involved with carbohydrate and lipid metabolism pathways was further studied by quantitative PCR. The data indicated that six clones similar to the genes ChREBP, FoxO1, apoB, IHPK2, KIF1B, and FSP27, which participate in de novo synthesis of fatty acid and secretion of very low density lipoproteins, had significantly lower expression levels in the hepatocytes treated with FFA mixtures. Meanwhile, 13 clones similar to the genes DGAT‐1, ACSL1, DHRS7, PPARα, L‐FABP, DGAT‐2, PCK, ACSL3, CPT‐1, A‐FABP, PPARβ, MAT, and ALDOB had significantly higher expression levels in the hepatocytes treated with FFA mixtures. These results suggest that several metabolic pathways are altered in goose hepatocytes, which may be useful for further research into the molecular mechanism of goose hepatic steatosis. J. Cell. Biochem. 111: 1482–1492, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号