首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
基于太阳能光伏技术的节能建筑系统的设计与研究   总被引:1,自引:0,他引:1  
介绍了太阳能光伏发电技术的原理及独立光伏系统和并网光伏系统的组成,总结了两种光伏系统中各组成部分的作用。分析了目前建筑耗能和建筑节能的现状,指出光伏技术与建筑的一体化方案势在必行。分析比较了几种常用的太阳能光伏利用与建筑一体化的实施方式,总结了各种方式的特点。最后提出了几条光伏建筑一体化的基本设计原则。  相似文献   

2.
在碳达峰、碳中和的目标下,如何有效利用光伏发电技术,实现建筑领域的节能减排,切实推进光伏建筑一体化融合发展,已经成为当前社会和业内重点关注的课题。简要介绍了光伏建筑一体化的基本概念和技术路线,并从光伏组件在建筑中的不同应用场景出发,剖析了不同的产品特性,阐述了光伏建筑一体化未来的市场空间以及面临的挑战。  相似文献   

3.
近年来,光伏建筑一体化技术得到了快速发展,成为建筑节能领域的一个亮点。文章对光伏建筑一体化应用中涉及的关键问题,包括光伏与建筑的结合形式、光伏电池的选择、相关能耗以及成本问题,分别进行了分析和探讨,并针对不同建筑的具体情况提出了建议。  相似文献   

4.
本文介绍了光伏建筑一体化国内外发展动态,论述了这种技术对建筑能耗和城市微气候的相互影响,指出了为促进光伏建筑一体化在城市中更全面推广应当深入研究的方向。  相似文献   

5.
中国太阳能光伏发电产业的现状与前景   总被引:4,自引:0,他引:4  
光伏发电技术直接将太阳光转换成电能,没有任何污染,有助于解决全球变暖的问题和我国的能源安全问题。介绍了光伏发电的市场和技术发展状况以及光伏一体化建筑技术,提出了“阳光三峡”的理念,文末展望了国内光伏发电的前景。  相似文献   

6.
介绍了太阳能光伏与建筑一体化现状,分析和借鉴了国外光伏与建筑一体化设计理念。通过探讨光伏与建筑一体化路线,认为未来建筑发展是从BIPV到BIPV/T到NET、绿色建筑的一种基本模式,该模式可为中国光伏与建筑一体化未来发展提供参考。  相似文献   

7.
中国太阳能光伏发电产业的现状与前景   总被引:17,自引:0,他引:17  
光伏发电技术可直接将太阳光转换成电能,没有任何污染,有助于解决全球变暖的问题和我国的能源安全问题。文中介绍了光伏发电的市场和技术发展状况,叙述了太阳能电池、并网发电以及光伏一体化建筑技术,提出了“阳光三峡”的理念,展望了国内光伏发电的前景。  相似文献   

8.
近年来光伏建筑一体化已成为研究开发的热点。介绍了光伏建筑一体化的发展优势、发电系统的工作原理。通过对乌鲁木齐达坂城西部歌城光伏建筑一体化工程设计案例分析,证实了光伏建筑一体化项目在环境影响、综合社会效益等方面具备显著的优势。  相似文献   

9.
光伏建筑一体化在国外发展良好。国内各项政策到位和光伏产业迅速成长将使光伏建筑一体化市场逐步启动。本文探讨了杭州在这方向上具有的优先条件和发展的可能性。  相似文献   

10.
文章介绍了太阳能光伏发电技术的城市建筑一体化应用形式和目前市场上晶体硅太阳能电池板的减反射特性,比较了不同物质和材质的反射率,分析太阳能光伏建筑一体化应用对城市的光污染影响。  相似文献   

11.
This paper presents the modeling method and coordinate control strategy for photovoltaic dc building module (PV-DCBM) based building integrated photovoltaic (BIPV) system. The PV-DCBM based BIPV system consists of plenty of PV-DCBMs and a centralized inverter which are coupled to the common dc bus in parallel. Each PV-DCBM is integrated with a PV building material to extract maximum power from it and then a centralized inverter is used to transfer the power to the grid. The PV-DCBM based BIPV system has some significant advantages for building integrated applications, such as individual MPPT, inherent data monitor, low cost and excellent expandability. A coordinate control strategy based on energy balance of the PV-DCBM based BIPV system is proposed to realize the individual control for each PV-DCBM and the centralized inverter. The accurate small-signal model of the PV-DCBM based BIPV system is built based on the proposed operation principle and a detailed design approach of the coordinate controller is proposed. Experimental results on the laboratory prototype verify the validity of the proposed modeling and coordinate control method.  相似文献   

12.
Building integrated photovoltaics (BIPV) has the potential to become a major source of renewable energy in the urban environment. BIPV has significant influence on the heat transfer through the building envelope because of the change of the thermal resistance by adding or replacing the building elements. Four different roofs are used to assess the impacts of BIPV on the building’s heating-and-cooling loads; namely ventilated air-gap BIPV, non-ventilated (closed) air-gap BIPV, closeroof mounted BIPV, and the conventional roof with no PV and no air gap. One-dimensional transient models of four cases are derived to evaluate the PV performances and building cooling-and-heating loads across the different roofs in order to select the appropriate PV building integration method in Tianjin, China. The simulation results show that the PV roof with ventilated air-gap is suitable for the application in summer because this integration leads to the low cooling load and high PV conversion efficiency. The PV roof with ventilation air-gap has a high time lag and small decrement factor in comparison with other three roofs and has the same heat gain as the cool roof of absorptance 0.4. In winter, BIPV of non-ventilated air gap is more appropriate due to the combination of the low heating-load through the PV roof and high PV electrical output.  相似文献   

13.
14.
The low irradiance efficiency of photovoltaic modules is important to the optimization of BIPV systems. When photovoltaic modules are integrated into a building, architectural design considerations compete with maximizing photovoltaic energy production. As a result, BIPV arrays are often not facing south and are frequently mounted vertically. Under these conditions, a greater portion of the total sunlight striking the array is diffuse or at high angles of incidence. In northern latitudes a significant amount of the total yearly energy is produced at low light levels.A grid-connected array of BIPV modules integrated into the BCIT Technology Centre building in Burnaby, B.C. was used for assessing the accuracy of an energy performance model developed for BIPV systems. The BIPV system uses AC modules and a computerized data acquisition system for monitoring the performance of modules and inverters. The performance model was developed from analysis of the open circuit voltage, maximum power point voltage and maximum power point current of the individual modules comprising the BIPV array.The algorithm for calculating power output of the photovoltaic array is derived from the ideal diode equation using the single diode model of a photovoltaic cell. An empirically derived parameter modifies the equation. Once the parameters for different module technologies are established, it is possible to compare their annual performance in a BIPV system.  相似文献   

15.
针对当前太阳能建筑一体化应用中存在的问题,提出太阳能光伏光热建筑一体化(BIPV/T)综合利用研究的新概念、新方法和新功能,不仅能提高太阳能建筑一体化的综合利用效率、降低应用成本,且使得太阳能功能更多、全年利用率更高。该文介绍了中国科学技术大学近年来的相关研究,包括与建筑相结合的光伏/热水系统、碲化镉光伏通风窗系统、光伏/空气/热水复合被动墙体系统、光伏光热-热催化/洁净多功能复合墙体系统的原理、功能及效率,拓展了太阳能建筑一体化研究和应用的新途径,为实现太阳能建筑大规模应用以及创造健康舒适的室内环境提供新的方法。  相似文献   

16.
Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype façade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces.  相似文献   

17.
An analysis has been carried out on the first practical application in Korea of the design and installation of building integrated photovoltaic (BIPV) modules on the windows covering the front side of a building by using transparent thin-film amorphous silicon solar cells. This analysis was performed through long-term monitoring of performance for 2 years. Electrical energy generation per unit power output was estimated through the 2 year monitoring of an actual BIPV system, which were 48.4 kWh/kWp/month and 580.5 kWh/kWp/year, respectively, while the measured energy generation data in this study were almost half of that reported from the existing data which were derived by general amorphous thin-film solar cell application. The reason is that the azimuth of the tested BIPV system in this study was inclined to 50° in the southwest and moreover, the self-shade caused by the projected building mass resulted in the further reduction of energy generation efficiency. From simulating influencing factors such as azimuth and shading, the measured energy generation efficiency in the tested condition can be improved up to 47% by changing the building location in terms of azimuth and shading, thus allowing better solar radiation for the PV module. Thus, from the real application of the BIPV system, the installation of a PV module associated with azimuth and shading can be said to be the essentially influencing factors on PV performance, and both factors can be useful design parameters in order to optimize a PV system for an architectural BIPV application.  相似文献   

18.
Building-integrated photovoltaics (BIPV) is an innovative green solution that incorporated energy generation into the building façade with modification on the building material or architectural structure. It is a clean and reliable solution that conserves the aesthetical value of the architecture and has the potential to enhance the building's energy efficiency. Malaysia's tropical location has a high solar energy potential to be exploited, and BIPV is a very innovative aspect of technology to employ the available energy. Heriot-Watt University Malaysia (HWUM) has a unique roof design that could be utilized as an application of the BIPV system to generate electricity, reducing the carbon footprint of the facility. Eight BIPV systems of different PV technologies and module types and with capacities of 411.8 to 1085.6 kW were proposed for the building. The environmental plugin software has been integrated with a building geometry modelling tool to visualize and estimate the energy potential from the roof surface in a 3D modelling software. Additionally, detailed system simulations are conducted using PVSyst software, where results and performance parameters are analysed. The roof surface is shown to provide great energy potential and studied scenarios generated between 548 and 1451 MWh yearly with PR range from 78% to 85%. C-Si scenarios offer the best economical profitability with payback period of 4.4 to 6.3 years. The recommended scenario has a size of 1085.5 kW and utilizes thin-film CdTe PV modules. The system generates 1415 MWh annually with a performance ratio of 84.9%, which saves 62.8% of the electricity bill and has an estimated cost of 901 000 USD. Installation of the proposed system should preserve the aesthetical value of the building's roof, satisfy BIPV rules, and most importantly, conserves energy, making the building greener.  相似文献   

19.
Perfect modeling of the building‐integrated photovoltaic (BIPV) module circuit equivalent is required for examining the operation of a BIPV system. Before designing the power electronic converters of an overall BIPV system, a perfect diode modeling is required that usually resembles the I‐V and P‐V characteristics of the BIPV modules. In this research article, different types of diode modeling of BIPV systems along with their comparative analysis based on the Lambert W function in MATLAB/Simulink environment is presented. The main aim of this research article is to analyze Mprime transparent M 115‐130P‐FI BIPV modules (115 Wp and 130 Wp) and compare the existing diode models in terms of accuracy and extraction of unknown parameters for the same. Simulation results for Lambert W function based comparison of the five‐parameter model (FPM), seven‐parameter model (SPM) and nine‐parameter model (NPM) power of 115 Wp and 130 Wp BIPV modules along with their percentage errors are well presented. Lambert W function based comparison of FPM, SPM, and NPM is further made at different values of irradiations and temperatures respectively.  相似文献   

20.
Seung-Ho Yoo 《Solar Energy》2011,85(7):1291-1301
The degree of efficiency of Building Integrated Photovoltaic (BIPV) as a shading device and the variation of the electrical power generation over 1 year in a real building has already been experimentally investigated in my earlier research. In this paper, the influence of the angle of the solar cell panel, albedo of earth, building azimuth, and of solar cell panels under shading on the power generation are theoretically studied to further optimize BIPV implementation. For the validation of the theoretical work, experimental results of the Samsung Institute of Engineering and Construction Company building are used with a wind velocity of the weather data (TRY, test reference year) of Suwon area, Korea. The efficiency of the BIPV system as a shading device was compared at different months. In this work, the simulation program SOLCEL, for the calculation of a shading/sunlit area on solar cell module and facade, surface temperature of solar cell module, effective solar irradiance on solar cell module and the power generation of a BIPV as a shading device, was developed and validated. The SOLCEL can be applied to develop a multi functional Building Integrated Photovoltaic which could improve power generation, thermal comfort, natural lighting, cooling and heating, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号